131 research outputs found

    Metabolite Damage and Damage Control in a Minimal Genome

    Get PDF
    Analysis of the genes retained in the minimized Mycoplasma JCVI-Syn3A genome established that systems that repair or preempt metabolite damage are essential to life. Several genes known to have such functions were identified and experimentally validated, including 5-formyltetrahydrofolate cycloligase, coenzyme A (CoA) disulfide reductase, and certain hydrolases. Furthermore, we discovered that an enigmatic YqeK hydrolase domain fused to NadD has a novel proofreading function in NAD synthesis and could double as a MutT-like sanitizing enzyme for the nucleotide pool. Finally, we combined metabolomics and cheminformatics approaches to extend the core metabolic map of JCVI-Syn3A to include promiscuous enzymatic reactions and spontaneous side reactions. This extension revealed that several key metabolite damage control systems remain to be identified in JCVI-Syn3A, such as that for methylglyoxal. IMPORTANCE Metabolite damage and repair mechanisms are being increasingly recognized. We present here compelling genetic and biochemical evidence for the universal importance of these mechanisms by demonstrating that stripping a genome down to its barest essentials leaves metabolite damage control systems in place. Furthermore, our metabolomic and cheminformatic results point to the existence of a network of metabolite damage and damage control reactions that extends far beyond the corners of it that have been characterized so far. In sum, there can be little room left to doubt that metabolite damage and the systems that counter it are mainstream metabolic processes that cannot be separated from life itself

    The Large Observatory For X-ray Timing: LOFT

    Get PDF
    LOFT, the Large Observatory for X-ray Timing, is a new space mission concept devoted to observations of Galactic and extra-Galactic sources in the X-ray domain with the main goals of probing gravity theory in the very strong field environment of black holes and other compact objects, and investigating the state of matter at supra-nuclear densities in neutron stars. The instruments on-board LOFT, the Large area detector and the Wide Field Monitor combine for the first time an unprecedented large effective area (~10 m2 at 8 keV) sensitive to X-ray photons mainly in the 2-30 keV energy range and a spectral resolution approaching that of CCD-based telescopes (down to 200 eV at 6 keV). LOFT is currently competing for a launch of opportunity in 2022 together with the other M3 mission candidates of the ESA Cosmic Vision Progra

    Determination of the number of light neutrino species from single photon production at LEP

    Get PDF
    A determination of the number of light neutrino families performed by measuring the cross section of single photon production in \ee\ collision near the \Zo\ resonance is reported. From an integrated luminosity of 100 pb1100~\mathrm{pb^{-1}}, collected during the years 1991--94, we have observed 2091 single photon candidates with an energy above 1~\GeV\ in the polar angular region 45<θγ<13545^\circ < \theta_\gamma < 135^\circ. From a maximum likelihood fit to the single photon cross section, the \Zo\ decay width into invisible particles is measured to be \Ginv = 498 \pm 12 \mathrm{(stat)} \pm 12 \mathrm{(sys)~MeV}. Using the Standard Model couplings of neutrinos to the \Zo, the number of light neutrino species is determined to be $N_\nu = 2.98 \pm 0.07 (\mathrm{stat}) \pm 0.07 (\mathrm{sys}).

    Measurement of the inclusive charmless semileptonic branching fraction of beauty hadrons and a determination of |VubV_{ub}| at LEP

    Get PDF
    A measurement of the inclusive charmless semileptonic branching fraction of beauty hadrons, bXuν\mathrm{b}\rightarrow\mathrm{X}_\mathrm{u }\ell\nu, has been performed using almost two million hadronic Z decays collected by the L3 experiment at LEP, yielding the result: \begin{displaymath} \mathrm{Br}(\mathrm{b}\rightarrow\mathrm{X}_\mathr m{u}\ell\nu) = (3.3 \pm 1.0 \pm 1.7)\times 10^{-3}. \end{displaymath} The first uncertainty is statistical and the second is systematic. The modulus of the Cabibbo-Kobayashi-Maskawa matrix element Vub\mathrm{V_{ub}} extracted from this measurement is: \begin{displaymath} |\mathrm{V_{ub}}| = (6.0\, ^{+0.8}_{-1.0} \, ^{+1.4}_{-1.9} \pm 0.2)\times 10^{-3}, \end{displaymath} where the uncertainties are statistical, systematic and theoretical, respectively

    Measurement of the effective weak mixing angle by jet-charge asymmetry in hadronic decays of the Z boson

    Get PDF
    The coupling of the Z boson to quarks is studied in a sample of about 3.5 million hadronic Z decays collected by the L3 experiment at LEP from 1991 to 1995. The forward-backward quark charge asymmet ry is measured by means of a jet charge technique. From the measured asymmetries, the effective weak mixing angle is determined to be \begin{center} $\STE = 0.2327 \pm 0.0012(\mbox{\emph{stat.}} ) \pm 0.0013(\mbox{\emph{syst.}}).

    Local multiplicity fluctuations in hadronic Z decay

    Get PDF
    Local multiplicity fluctuations in hadronic Z decays are studied using the L3 detector at LEP. Bunching parameters are used for the first time in addition to the normalised factorial moment method. The bunching parameters directly demonstrate that the fluctuations in rapidity are multifractal. Monte Carlo models show overall agreement with the data, reproducing the trend, although not always the magnitude, of the factorial moments and bunching parameters

    Angular multiplicity fluctuations in hadronic Z decays and comparison to QCD models and analytical calculations

    Get PDF
    Local multiplicity fluctuations in angular phase space intervals are studied using factorial moments measured in hadronic events at \sqrt{s}\simeq 91.2\GeV, which were collected by the L3 detector at LEP in 1994. Parton shower Monte Carlo programs agree well with the data. On the other hand, first-order QCD calculations in the Double Leading Log Approximation and the Modified Leading Log Approximation are found to deviate significantly from the data

    The Large Observatory for x-ray timing

    Get PDF
    The Large Observatory For x-ray Timing (LOFT) was studied within ESA M3 Cosmic Vision framework and participated in the final down-selection for a launch slot in 2022-2024. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument, LOFT will study the behaviour of matter under extreme conditions, such as the strong gravitational field in the innermost regions of accretion flows close to black holes and neutron stars, and the supra-nuclear densities in the interior of neutron stars. The science payload is based on a Large Area Detector (LAD, 10 m2 effective area, 2-30 keV, 240 eV spectral resolution, 1° collimated field of view) and a WideField Monitor (WFM, 2-50 keV, 4 steradian field of view, 1 arcmin source location accuracy, 300 eV spectral resolution). The WFM is equipped with an on-board system for bright events (e.g. GRB) localization. The trigger time and position of these events are broadcast to the ground within 30 s from discovery. In this paper we present the status of the mission at the end of its Phase A study

    Upper limit on the lifetime difference of short- and long-lived Bs0B^0_s mesons

    Get PDF
    An upper limit on the lifetime difference of short- and long-lived Bs0\rm B^0_s mesons has been obtained using an inclusive bottom hadron sample from 2 million hadronic Z decays collected by the L3 experiment at LEP. A lifetime fit has been performed on data samples separately enriched in neutral and charged b hadrons. An experimental upper limit on the decay rate difference of short- and long-lived Bs0\rm B^0_s mesons of \begin{displaymath} ~~~~ {\rm (|\Delta\Gamma|/\Gamma)_{B^0_s}} < 0.67 ~~~~~~~\mathrm{(95\% \; C.L.)} \end{displaymath} has been determined. In addition, the lifetimes of B+\rm B^+ and Bd0\rm B^0_d mesons have been measured to be τ(B+)=1.66±0.06±0.03  ps\tau(\rm B^+) = 1.66 \pm 0.06 \, \pm 0.03 \; \mathrm{ps} and τ(Bd0)=1.52±0.06±0.04  ps\tau(\rm B^0_d) = 1.52 \pm 0.06 \, \pm 0.04 \; \mathrm{ps}, where the first errors are statistical and the second are systematic
    corecore