10 research outputs found

    Innate immunity and remodelling

    Get PDF
    A wide variety of cardiac disease states can induce remodelling and lead to the functional consequence of heart failure. These complex disease states involve a plethora of parallel signal transduction events, which may be associated with tissue injury or tissue repair. Innate immunity is activated in hearts injured in different ways, evident as cytokine release from the heart, activation of toll-like receptors involved in recognizing danger, and activation of the transcription factor nuclear factor kappa B. Nuclear factor kappa B regulates gene programmes involved in inflammation as well as the resolution of inflammation. The impact of this is an enigma; while cytokines, toll-like receptors, and nuclear factor kappa B appear to elicit myocardial protection in studies of preconditioning, the literature strongly indicates a detrimental role for activation of innate immunity in studies of acute ischaemia–reperfusion injury. The impact of activation of cardiac innate immunity on the long-term outcome in in vivo models of hypertrophy and remodelling is less clear, with conflicting results as to whether it is beneficial or detrimental. More research using genetically engineered mice as tools, different models of evoking remodelling, and long-term follow-up is required for us to conclude whether activation of the innate immune system is good, bad, or unimportant in chronic injury models

    The Diffusion of Environmental Policy Innovations: A Contribution to the Globalisation of Environmental Policy

    No full text

    Echocardiographic evaluation of systolic heart failure

    No full text

    Heart rate recovery and morbidity after noncardiac surgery: Planned secondary analysis of two prospective, multi-centre, blinded observational studies

    Get PDF
    BackgroundImpaired cardiac vagal function, quantified preoperatively as slower heart rate recovery (HRR) after exercise, is independently associated with perioperative myocardial injury. Parasympathetic (vagal) dysfunction may also promote (extra-cardiac) multi-organ dysfunction, although perioperative data are lacking. Assuming that cardiac vagal activity, and therefore heart rate recovery response, is a marker of brainstem parasympathetic dysfunction, we hypothesized that impaired HRR would be associated with a higher incidence of morbidity after noncardiac surgery.MethodsIn two prospective, blinded, observational cohort studies, we established the definition of impaired vagal function in terms of the HRR threshold that is associated with perioperative myocardial injury (HRR ≤ 12 beats min-1 (bpm), 60 seconds after cessation of cardiopulmonary exercise testing. The primary outcome of this secondary analysis was all-cause morbidity three and five days after surgery, defined using the Post-Operative Morbidity Survey. Secondary outcomes of this analysis were type of morbidity and time to become morbidity-free. Logistic regression and Cox regression tested for the association between HRR and morbidity. Results are presented as odds/hazard ratios [OR or HR; (95% confidence intervals).Results882/1941 (45.4%) patients had HRR≤12bpm. All-cause morbidity within 5 days of surgery was more common in 585/822 (71.2%) patients with HRR≤12bpm, compared to 718/1119 (64.2%) patients with HRR>12bpm (OR:1.38 (1.14-1.67); p = 0.001). HRR≤12bpm was associated with more frequent episodes of pulmonary (OR:1.31 (1.05-1.62);p = 0.02)), infective (OR:1.38 (1.10-1.72); p = 0.006), renal (OR:1.91 (1.30-2.79); p = 0.02)), cardiovascular (OR:1.39 (1.15-1.69); pConclusionsMulti-organ dysfunction is more common in surgical patients with cardiac vagal dysfunction, defined as HRR ≤ 12 bpm after preoperative cardiopulmonary exercise testing.Clinical trial registryISRCTN88456378

    Therapeutic approaches to cancer-associated immune suppression

    No full text
    corecore