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Abstract

Background

Impaired cardiac vagal function, quantified preoperatively as slower heart rate recovery

(HRR) after exercise, is independently associated with perioperative myocardial injury.

Parasympathetic (vagal) dysfunction may also promote (extra-cardiac) multi-organ dysfunc-

tion, although perioperative data are lacking. Assuming that cardiac vagal activity, and

therefore heart rate recovery response, is a marker of brainstem parasympathetic dysfunc-

tion, we hypothesized that impaired HRR would be associated with a higher incidence of

morbidity after noncardiac surgery.

Methods

In two prospective, blinded, observational cohort studies, we established the definition of

impaired vagal function in terms of the HRR threshold that is associated with perioperative

myocardial injury (HRR� 12 beats min-1 (bpm), 60 seconds after cessation of cardiopulmo-

nary exercise testing. The primary outcome of this secondary analysis was all-cause mor-

bidity three and five days after surgery, defined using the Post-Operative Morbidity Survey.

Secondary outcomes of this analysis were type of morbidity and time to become morbidity-

free. Logistic regression and Cox regression tested for the association between HRR and

morbidity. Results are presented as odds/hazard ratios [OR or HR; (95% confidence

intervals).
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Results

882/1941 (45.4%) patients had HRR�12bpm. All-cause morbidity within 5 days of surgery

was more common in 585/822 (71.2%) patients with HRR�12bpm, compared to 718/1119

(64.2%) patients with HRR>12bpm (OR:1.38 (1.14–1.67); p = 0.001). HRR�12bpm was

associated with more frequent episodes of pulmonary (OR:1.31 (1.05–1.62);p = 0.02)),

infective (OR:1.38 (1.10–1.72); p = 0.006), renal (OR:1.91 (1.30–2.79); p = 0.02)), cardio-

vascular (OR:1.39 (1.15–1.69); p<0.001)), neurological (OR:1.73 (1.11–2.70); p = 0.02))

and pain morbidity (OR:1.38 (1.14–1.68); p = 0.001) within 5 days of surgery.

Conclusions

Multi-organ dysfunction is more common in surgical patients with cardiac vagal dysfunction,

defined as HRR� 12 bpm after preoperative cardiopulmonary exercise testing.

Clinical trial registry

ISRCTN88456378.

Introduction

Reduced efferent vagal neural activity (hereafter, vagal dysfunction) is a common feature of

injury and systemic inflammation.[1, 2] Experimental medicine studies have demonstrated

that parasympathetic neurotransmitters released by vagal nerve activity confer organ protec-

tion,[3] in part through maintaining exercise capacity[4] and/or limiting systemic inflamma-

tion.[5] Preservation, or augmentation, of efferent vagal nerve activity reduces cardiac,[6]

pulmonary[7] and renal injury,[8, 9] as well as enhancing endogenous analgesic mechanisms

[10] and promoting gastrointestinal recovery after surgery.[11] Slower heart rate recovery

(HRR) after exercise is associated with an increased risk of perioperative myocardial injury

after noncardiac surgery.[12]

Parasympathetic vagal innervation of the heart can be quantified by heart rate recovery fol-

lowing peak exercise [13–15]; heart rate recovery is independent of exercise workload.[16]

Vagal reactivation is the primary mechanism underlying deceleration of heart rate after exer-

cise, as demonstrated by its blockade in humans by atropine.[17] Athletes exhibit accelerated,

vagally mediated heart rate recovery after exercise, in contrast to the blunted response

observed in patients with heart failure.[17] Heart rate control is attributable to neuronal sub-

strate within the nucleus ambiguus. [18] The other main parasympathetic brainstem compo-

nent, the dorsal vagal motor nucleus, also regulates cardiac ventricular function, as well as

innervating multiple other organs.[18] Developmental ontologic studies show that neurons

from the DVMN complex give rise to neurons comprising the nucleus ambiguous.[18] There-

fore, dysfunction in nucleus ambiguous neurons, is likely to be mirrored in other vagal

neurons.

These data suggest a mechanistic role for cardiac vagal dysfunction in promoting periopera-

tive myocardial injury. Whether cardiac vagal impairment reflects broader parasympathetic

impairment that may promote perioperative organ dysfunction has not been systematically

explored.

Here, we hypothesized that impaired HRR, a physiologic marker of impaired cardiac para-

sympathetic activity, was associated with increased postoperative morbidity.

Heart rate recovery and postoperative morbidity
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Methods

Study design and setting

We undertook a prespecified secondary analysis of two international, multi-centre, prospective

observational studies utilising cardiopulmonary exercise testing. In both studies, morbidity

data were prospectively collected at the same timepoints after surgery, with both patients and

clinicians blinded to heart rate recovery. Using these similar datasets, we assessed whether

impaired vagal activity was associated with excess postoperative morbidity after noncardiac

surgery. Research ethics committees reviewed both studies, which were conducted in accor-

dance with the principles of the Declaration of Helsinki and the Research Governance

Framework.

The Post Operative Morbidity-Heart Rate recovery (POM-HR) study was approved by UK

Medical Research Ethical Committee (MREC):12/LO/0453 [approved 30/5/2012];

ISRCTN88456378). The Measurement of Exercise Tolerance before Surgery (METS) study

was approved by UK MREC 13/LO/0135 [approved 15 February 2013].

The POM-HR study prospectively recruited high-risk patients (>40y) in 5 UK centres from

to 1/11/2012 to 17/1/2015. Inclusion criteria were: (1) referral for cardiopulmonary exercise

testing from the patients surgical and/or anaesthesia preassessment clinic; (2) surgery of dura-

tion >2 h; (3) at higher risk of complications after surgery, as estimated by their referring

anaesthesiologist and/or surgical service. Patients were excluded if they had ATS-defined con-

traindications to cardiopulmonary exercise testing. The primary outcome in POM-HR was

any postoperative complication as defined by the Postoperative Morbidity Survey (POMS)22

within five days of surgery.

The METS observational study was not registered; the protocol and methods were pub-

lished prior to completion of the study. [19, 20] METS was undertaken at 25 hospitals in Can-

ada, UK, Australia, and New Zealand, recruiting patients from March 1, 2013 to March 25,

2016. Inclusion criteria were: (1) participants >40y (2) elective noncardiac surgery under gen-

eral or regional anaesthesia (or both) with a minimum of one overnight hospital stay (3)�1

risk factor for cardiac complications (coronary artery disease, cardiac failure, cerebrovascular

disease, diabetes mellitus, chronic renal failure, peripheral arterial disease, hypertension, a his-

tory of tobacco smoking within 12 months of surgery, or >70y). Exclusion criteria were: endo-

vascular surgery; insufficient time for cardiopulmonary exercise testing (CPET) before

surgery; implantable cardioverter–defibrillator; pregnancy; previous enrolment in the study;

severe hypertension (>180/100 mm Hg) and/or other American Thoracic Society-defined

contraindications to undertaking CPET. The primary outcome in METS was death or myocar-

dial infarction within 30 days after surgery. The secondary outcomes included complications

after surgery, as defined by POMS and Clavien-Dindo grading.

Cardiopulmonary exercise testing (CPET)

Participants undertook CPET on an electronic cycle ergometer to maximal tolerance, having

continued their normal cardiovascular medications up to and including the day of the test.

[21] Continuous 12-lead electrocardiogram was recorded. Resting heart rate was recorded

before unloaded pedaling in the sitting position. Equipment was calibrated before each test

using standard reference gases. Continuous breath-by-breath gas exchange analysis was per-

formed. All patients were instructed to continue cycling until symptom-limited fatigue

occurred. After peak effort was reached, workload was reduced to 20W and the participant

continued to pedal for five minutes in order to warm-down. Investigators at each site inter-

preted each CPET and collected a standardised data set (Supplementary data). Clinicians at

Heart rate recovery and postoperative morbidity
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each site were blinded to the results of cardiopulmonary exercise testing, except where there

was a safety concern according to pre-defined criteria.[19] We calculated heart rate recovery

by subtracting heart rate 1 minute after the end of exercise from heart rate at peak exercise.

[22] Personnel and patients were masked to heart rate recovery data; none of the software used

in each centre automatically provided these data. Heart rate recovery data were not provided

in reports to clinical teams; therefore these data had no influence on subsequent clinical care.

Perioperative management

Patients were cared for by the normal attending clinicians, who were blinded to HRR results.

All hospitals that contributed patients partake in enhanced recovery programs for the types of

surgery involved in this observational study. Surgery and anesthesia were conducted by spe-

cialist staff. Perioperative care conformed with local clinical guidelines and was not

standardised.

Exposure of interest

The exposure of interest was heart rate recovery, for which we classified HRR as normal or

impaired based on values calculated at 1 minute after the end of peak exercise�12 beats.min-1.

Previous exercise studies that have enrolled>20000 patients in the general population show

that HRR�12 beats.min-1 one minute after cessation of exercise is independently associated

with increased mortality. [13, 23]

Outcomes

The primary outcome was all-cause postoperative morbidity, assessed using the Post Operative

Morbidity Survey (POMS; S1 Table), which was collected prospectively within 5 days of sur-

gery.[2] Secondary outcomes were type of morbidity (as defined by POMS), time to become

morbidity-free and length of hospital stay.

Sensitivity analysis

To examine whether cardiac vagal dysfunction is associated with outcomes after surgery inde-

pendently of subclinical moderate-severe heart failure, [24] we repeated the primary analysis

to assess whether the presence of delayed HRR remained associated with the primary outcome

in the presence or absence of VO2 peak�14 ml/kg/min and/or VE/VCO2 at the anaerobic

threshold�34. Preoperative use of beta-blockade, which does not impact negatively on HRR

in the cardiac failure population, [24] [25] was also subjected to a similar sensitivity analysis.

Statistical analysis

Manual and automated validation checks of data were performed both centrally and through

source data verification. Descriptive categorical data are summarized as counts (percentage).

Descriptive continuous data are presented as mean (95% confidence intervals) and analysed

using ANCOVA (controlling for age), with post-hoc Tukey Kramer tests to identify within

and between factor differences. We present participants’ characteristics for the whole cohort

and stratified by HRR� or >12 beats.min-1.

The primary (categorical) outcome was analysed using Fishers exact test for trend. Second-

ary outcomes were analysed using Fisher’s exact test (type/severity of morbidity) and Cox

regression analysis (time-to-become morbidity free), taking into account the following inde-

pendent variables: age, body-mass index, gender, surgery type (intra-abdominal, orthopaedic,

urology/gynaecology, vascular, others), diabetes mellitus, preoperative cardiovascular disease

Heart rate recovery and postoperative morbidity
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(ischaemia/heart failure/dysrhythmias), resting heart rate and HRR�12bpm. For log-rank

analysis of length of stay, patients who died were right-censored as the largest length of stay.

P<0.05 was considered significant. All statistical analyses were undertaken using NCSS 11

(Kaysville, UT, USA).

Sample size calculation

Sample size was calculated to detect differences in all-cause morbidity on postoperative day 5,

assuming that, overall, up to 40% of patients undergoing major surgical procedures may sus-

tain morbidity at this timepoint.[26, 27] On the basis that a 15% relative risk reduction in all-

cause morbidity by postoperative day 5 would be of clinical significance, with power of 90%, at

least 1920 patients would be required to detect a 15% relative risk reduction in postoperative

morbidity comparing patients with HRR�12 beats min-1 versus patients with preserved HRR

(α = 0.05).

Results

Patient characteristics

1741 patients were recruited into the METS study between 1st March 2013 and 25th March

2016. 840 patients were recruited into the POM-HR study between 1st May 2012 and 31st

March 2015. 1941 cases were analysed after cases with missing data were excluded; 882/1941

(45.4%) had HRR�12 beats min-1 (Fig 1). Mean resting heart rate was 6 (95%CI:4–7) beats

minute-1 higher in patients with HRR�12 beats min-1 (p<0.001, by ANCOVA controlling for

age; Fig 2A). Peak heart rate during exercise was 12 (95%CI:10–14) beats minute-1 lower in

patients with HRR�12 beats min-1 (p<0.001, by ANCOVA controlling for age; Fig 2A). Sys-

tolic and diastolic blood pressure at rest were similar (Table 1). Patients with/without delayed

heart recovery had similar preoperative characteristics and underwent similar types of surgery

(Table 1).

Primary outcome: Morbidity within 5 days of surgery

All-cause morbidity within five days of surgery was more common in 585/822 (71.2%) patients

with HRR�12bpm, compared to 718/1119 (64.2%) patients with preserved HRR (OR:1.29

(1.06–1.58); p = 0.001; Table 2; Fig 2B). Morbidity on postoperative day 3 and 5 is provided in

S2 Table. Logistic regression analysis showed that lower HRR was progressively independently

associated with higher morbidity rates within 5 days of surgery, independent of resting heart

rate (S3 and S4 Tables).

Secondary outcomes

Types of morbidity. HRR�12 beats.min-1 was associated with more frequent episodes of

morbidity on both postoperative days 3 and 5. (S2 Table) Cardiovascular morbidity was more

common in patients with HRR�12 beats.min-1 (OR:1.39 (1.15–1.69); p<0.001)), characterised

by more episodes of hypotension (OR:1.71 (1.06–2.76); p = 0.03), more frequent intraoperative

use of norepinephrine (OR:3.71 (1.54–8.94); p = 0.003) and a higher proportion of arrythmias

detected independent of hypotension (4.1% versus 3.2% respectively). Patients with HRR�12

beats.min-1 sustained more pulmonary (OR:1.31 (1.05–1.62); p = 0.02), including pneumonia

(OR:2.52 (1.05–6.05)), infection (OR:1.38 (1.10–1.72); p = 0.006), renal (OR:1.91 (1.30–2.79);

p = 0.02), neurological (OR:1.73 (1.11–2.70); p = 0.02) and pain morbidity (OR:1.38 (1.14–

1.68); p = 0.001; S2 Table).

Heart rate recovery and postoperative morbidity
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Time to become morbidity-free. Fewer patients with HRR�12 beats.min-1 (237/882

(28.8%)) remained morbidity-free within 5 days of surgery, compared to 401/1119 (35.8%)

patients with preserved HRR (OR:1.35 (1.06–1.70); p = 0.01; S5 Table). Surgery for malignancy

(risk ratio:1.26 (1.13–1.40); p<0.001) and HRR�12 beats.min-1 (risk ratio:1.11 (1.05–1.18);

Fig 1. Analysis plan.

https://doi.org/10.1371/journal.pone.0221277.g001

Heart rate recovery and postoperative morbidity
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Fig 2. Exercise-evoked heart rate dynamics and distribution of heart rate recovery. A. Exercise-evoked changes in heart rate from

baseline to peak, and 60s after recovery from the end of exercise in patients with delayed, or normal, heart rate recovery>12beats.min-1.

Red colour indicate values below which are associated with increased risk of all-cause mortality obtained in large epidemiological

studies.[13, 14] Median (25-75th centile values shown; p values determined by ANCOVA, controlling for age. B. Distribution of heart

Heart rate recovery and postoperative morbidity
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p<0.001) were independently associated with delayed hospital discharge (Fig 3; S5 Table).

HRR was dose-dependently associated with length of hospital stay (S6 Table).

Sensitivity analysis

Patients with HRR�12 beats.min-1 remained more likely to sustain morbidity within 5 days of

surgery (OR:1.38 (1.12–1.69); p<0.001; S1 Fig), independent of the presence/absence of nega-

tively prognostic CPET factors VO2 peak�14 ml kg min and/or VE/VCO2 ratio�34.[28] A

similar relationship was observed for patients receiving beta-blockers (OR:1.24 (0.83–1.86).

Mortality was 0.7% in patients with preoperative HRR<12, compared to 0.3% in those with

HRR>12 (odds ratio:2.7 (95%CI:0.7–10.7)).

Discussion

The principal finding of these two large generalisable studies is that parasympathetic dysfunc-

tion–as quantified by delayed HRR after preoperative exercise- is more frequently associated

with morbidity within 5 days of surgery. The broad range, and temporal pattern, of morbidity

after surgery is consistent with laboratory/translational work highlighting that loss of vagal

rate recovery (left axis) plotted against all-cause morbidity (right axis) within 5 days of surgery. Red bars indicate values below which are

associated with increased risk of all-cause mortality obtained in large epidemiological studies.[13, 14].

https://doi.org/10.1371/journal.pone.0221277.g002

Table 1. Patient characteristics.

HRR>12

(n = 1119)

HRR�12

(n = 822)

METS (n, %) 763 (68.1%) 538 (65.5%)

Age (years) 64 (11) 68 (10)

Male (n, %) 743 (66%) 487 (59%)

Body mass index (kg.m-2) 28.2 (6.0) 28.7 (6.0)

Creatinine (μmol.L-1) 77 (67–90) 78 (67–95)

Anaerobic threshold (ml kg min-1) 13.0 (4.1) 11.5 (3.3)

Haemoglobin (g.L-1) 138 (16) 133 (17)

Systolic blood pressure (mmHg) 128 (17) 130 (19)

Diastolic blood pressure (mmHg) 77 (11) 77 (12)

Beta blocker (n, %) 160 (14%) 197 (24%)

Ca2+ channel blocker (n, %) 76 (7%) 93 (11%)

Diuretic (n, %) 50 (4%) 76 (9%)

Anti-platelet (n, %) 216 (19.3%) 141 (16.0%)

ACE-I/ARB (n, %) 322 (29%) 332 (40%)

Surgical procedure
Intra-abdominal (n, %) 478 (43%) 339 (38%)

Orthopaedic (n, %) 180 (16%) 131 (15%)

Urology/gynaecology (n, %) 308 (28%) 227 (26%)

Vascular (n, %) 48 (4%) 45 (5%)

Other (n, %) 104 (9%) 79 (9%)

Data presented as mean (SD), median (25-75th centile), or n (%). % patients/group provided within each surgical

category. HRR: heart rate recovery. ACE-I: Angiotensin-converting enzyme inhibitor. ARB: angiotensin receptor

blocker.

https://doi.org/10.1371/journal.pone.0221277.t001
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activity promotes multiple organ dysfunction. These data reinforce prognostic studies from

the general population, where delayed HRR�12 beats.minute-1 is a strong independent pre-

dictor of all-cause mortality in apparently otherwise healthy middle-aged subjects.[13, 14]

Table 2. Postoperative morbidity within 5 days of surgery. Data presented as n (%). % patients/HRR group provided within each surgical category. HRR- heart rate

recovery.

HRR>12

(n = 1119)

HRR�12

(n = 822)

Relative risk (95%CI) P value

Any POMS morbidity 718 (64.2%) 585 (71.2%) 1.38 (1.14–1.67) 0.001

Pulmonary 220 (19.7%) 199 (24.2%) 1.31 (1.05–1.62) 0.02

Infection 195 (17.4%) 185 (22.5%) 1.38 (1.10–1.72) 0.006

Renal 49 (4.4%) 66 (8.0%) 1.91(1.30–2.79) <0.001

Gastrointestinal 217 (19.4%) 184 (22.4%) 1.20 (0.96–1.50) 0.11

Cardiovascular 714 (63.8%) 584 (71.0%) 1.39 (1.15–1.69) <0.001

Neurological 37 (3.3%) 46 (5.6%) 1.73 (1.11–2.70) 0.02

Wound 11 (1.0%) 10 (1.2%) 1.24 (0.52–2.94) 0.66

Blood 17 (1.5%) 21 (2.6%) 1.70 (0.89–3.24) 0.13

Pain 716 (64.0%) 584 (71.0%) 1.38 (1.14–1.68) 0.001

https://doi.org/10.1371/journal.pone.0221277.t002

Fig 3. Delayed heart rate and postoperative outcome. Unadjusted Kaplan-Meier estimator for all surgery types showed that delayed heart rate recovery was

associated with prolonged hospital stay (HR: 1.15 (95%CI:1.05–1.26); p = 0.0008).

https://doi.org/10.1371/journal.pone.0221277.g003
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Taken together, these data suggest that cardiac vagal dysfunction represents a distinct endo-

type for morbidity after major surgery.

Vagal reactivation is the primary mechanism underlying deceleration of heart rate after

exercise, as demonstrated by its blockade in humans by atropine.[17] Athletes exhibit acceler-

ated, vagally mediated heart rate recovery after exercise, in contrast to the blunted response

observed in patients with heart failure.[17] Heart rate control is attributable to neuronal sub-

strate within the nucleus ambiguous. The other main parasympathetic brainstem substrate, the

dorsal vagal motor nucleus, also regulates cardiac ventricular function, as well as innervating

multiple other organs.[4] The development of morbidity across multiple organs suggests that a

broad deficiency in parasympathetic neurons may be present in many patients. However, we

cannot rule out that many of the morbidities over-represented in patients with delayed heart

rate recovery are linked indirectly through non-neural mechanisms. For example, hypotension

is more common in patients with delayed heart rate recovery, which in turn may predispose to

acute renal dysfunction.[29] Nevertheless, parasympathetic neural activity contributes to a

diverse range of physiological functions, with a broader role being plausible in pathological

states. Laboratory data shows that vagal neuromodulation of cardiomyocyte, gastrointestinal,

renal, lung, neurological and immune cells limits tissue injury in a range of pathological set-

tings. [7, 30, 31] Lack of cardiac vagal activity promotes arrhythmias,[32] perhaps in part due

to the detrimental effects of ongoing systemic inflammation.[33] Further reductions in para-

sympathetic activity induced by anaesthetic agents,[34] opioid analgesics[35] and inflamma-

tory modulation of afferent autonomic inputs[36] following surgery may therefore contribute

to postoperative morbidity.[2] Our data support the findings of a small study in patients

undergoing thoracic surgery for lung cancer, where a threshold value of HRR�12-beat.min-1

following the six-minute walk test was associated with postoperative cardiopulmonary compli-

cations.[37]

In cardiac failure, loss of parasympathetic activity is a consistent predictor of accelerated

mortality.[38] Failure to improve autonomic function- despite optimal medical therapy- is

associated with higher mortality.[39] Patients presenting for major surgery, who are frequently

deconditioned as a result of cancer and/or systemic inflammation,[40] appear to share similar

strikingly similar pathophysiological features.[28] Impaired heart rate recovery is independent

of clinically-defined cardiac comorbidity and is not influenced by drug therapy including con-

tinuation of β-blockade.[12, 40]

A strength of this study is the blinding of HRR data to participants and clinicians. The pro-

spective, international multi-centre study design suggests that these data are generalisable. Our

findings are limited by the morbidity measure used, given the sensitivity of the POMS for

many morbidities after major surgery. This limitation was partly addressed by tracking serial

morbidity, which allowed us to assess time to become morbidity free. This measure is more

mechanistically informative, as it reflects morbidity over time- as opposed to a snapshot pri-

mary outcome which may be misleading. The systematic grading of severity was captured par-

tially for some POMS-domains, and is likely to have provided a richer, more granular

understanding. The use of organ-specific biomarkers, as we have found with high-sensitivity

troponin,[12] may reveal further mechanistic insights. The choice of HRR threshold, and time-

point after cessation of exercise, requires further study. However, we used a standardised exer-

cise protocol, combined with the most stringent and widely adopted threshold of HRR

described thus far.[41] Moreover, in mechanistic work, we found a strong association between

the HRR threshold used and a pathological cellular phenotype.[42]

In summary, delayed HRR is independently associated with excess postoperative morbidity

leading to prolonged admission. Preoperative parasympathetic dysfunction represents a dis-

tinct endotype for morbidity after major surgery.
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