175 research outputs found

    Synthetic studies toward the brasilinolides: controlled assembly of a protected C1-C38 polyol based on fragment union by complex aldol reactions.

    Get PDF
    The brasilinolides are an architecturally complex family of 32-membered macrolides, characterised by potent immunosuppressant and antifungal properties, which represent challenging synthetic targets. By adopting a highly convergent strategy, a range of asymmetric aldol/reduction sequences and catalytic protocols were employed to assemble a series of increasingly elaborate fragments. The controlled preparation of suitable C1-C19 and C20-C38 acyclic fragments 5 and 6, containing seven and 12 stereocentres respectively, was first achieved. An adventurous C19-C20 fragment union was then explored to construct the entire carbon chain of the brasilinolides. This pivotal coupling step could be performed in a complex boron-mediated aldol reaction to install the required C19 hydroxyl stereocentre when alternative Mukaiyama-type aldol protocols proved unrewarding. A protected C1-C38 polyol 93 was subsequently prepared, setting the stage for future late-stage diversification toward the various brasilinolide congeners. Throughout this work, asymmetric boron-mediated aldol reactions of chiral ketones with aldehydes proved effective both for controlled fragment assembly and coupling with predictable stereoinduction from the enolate component.We thank the EPSRC (EP/F025734/1) and Syngenta for support, the Isaac Newton–Mays Wild Research Fellowship at Downing College (M.P.H.), the Herchel Smith Postdoctoral Fellowships Fund at Cambridge (C.J.C.) and the Deutsche Akademie der Naturforser Leopoldina (F.A.M.; BMBF-LPD 9901/8-148) for additional funding, and the EPSRC National Mass Spectrometry Centre (Swansea) for mass spectra.This is the final published version of the article. It was originally published in Organic & Biomolecular Chemistry (Paterson I, Housden MP, Cordier CJ, Burton PM, Mühlthau FA, Loiseleur O, Organic & Biomolecular Chemistry, 2015,13, 5716-5733 doi:10.1039/C5OB00498E). The final version is available at http://dx.doi.org/10.1039/C5OB00498

    Image-based view-angle independent cardiorespiratory motion gating and coronary sinus catheter tracking for x-ray-guided cardiac electrophysiology procedures

    Get PDF
    Determination of the cardiorespiratory phase of the heart has numerous applications during cardiac imaging. In this article we propose a novel view-angle independent near-real time cardiorespiratory motion gating and coronary sinus (CS) catheter tracking technique for x-ray fluoroscopy images that are used to guide cardiac electrophysiology procedures. The method is based on learning CS catheter motion using principal component analysis and then applying the derived motion model to unseen images taken at arbitrary projections, using the epipolar constraint. This method is also able to track the CS catheter throughout the x-ray images in any arbitrary subsequent view. We also demonstrate the clinical application of our model on rotational angiography sequences. We validated our technique in normal and very low dose phantom and clinical datasets. For the normal dose clinical images we established average systole, end-expiration and end-inspiration gating success rates of 100%, 85.7%, and 92.3%, respectively. For very low dose applications, the technique was able to track the CS catheter with median errors not exceeding 1 mm for all tracked electrodes. Average gating success rates of 80.3%, 71.4%, and 69.2% were established for the application of the technique on clinical datasets, even with a dose reduction of more than 10 times. In rotational sequences at normal dose, CS tracking median errors were within 1.2 mm for all electrodes, and the gating success rate was 100%, for view angles from RAO 90° to LAO 90°. This view-angle independent technique can extract clinically useful cardiorespiratory motion information using x-ray doses significantly lower than those currently used in clinical practice

    Discovery, characterization and in vivo activity of pyocin SD2, a protein antibiotic from Pseudomonas aeruginosa

    Get PDF
    Increasing rates of antibiotic resistance among Gram-negative pathogens such as Pseudomonas aeruginosa means alternative approaches to antibiotic development are urgently required. Pyocins, produced by P. aeruginosa for intraspecies competition, are highly potent protein antibiotics known to actively translocate across the outer membrane of P. aeruginosa. Understanding and exploiting the mechanisms by which pyocins target, penetrate and kill P. aeruginosa is a promising approach to antibiotic development. In this work we show the therapeutic potential of a newly identified tRNase pyocin, pyocin SD2, by demonstrating its activity in vivo in a murine model of P. aeruginosa lung infection. In addition, we propose a mechanism of cell targeting and translocation for pyocin SD2 across the P. aeruginosa outer membrane. Pyocin SD2 is concentrated at the cell surface, via binding to the common polysaccharide antigen (CPA) of P. aeruginosa lipopolysaccharide (LPS), from where it can efficiently locate its outer membrane receptor FpvAI. This strategy of utilizing both the CPA and a protein receptor for cell targeting is common among pyocins as we show that pyocins S2, S5 and SD3 also bind to the CPA. Additional data indicate a key role for an unstructured N-terminal region of pyocin SD2 in the subsequent translocation of the pyocin into the cell. These results greatly improve our understanding of how pyocins target and translocate across the outer membrane of P. aeruginosa. This knowledge could be useful for the development of novel anti-pseudomonal therapeutics and will also support the development of pyocin SD2 as a therapeutic in its own right

    Saturation magnetostriction and its low-temperature variation inferred for natural titanomaghemites: implications for internal stress control of coercivity in oceanic basalts

    Get PDF
    Highly oxidized titanomaghemite in oceanic basalts often carries remanent magnetization of high coercivity (stability), helping preserve the oceanic magnetic anomaly pattern. We study the source of this high coercivity in four oceanic basalts (from ODP sites 238, 572D, 470A and 556) containing highly oxidized titanomaghemite (titanium content parameter x ≈ 0.55 and oxidation parameter z ≈ 0.9 on average). Most of the titanomaghemite is likely in singledomain grains with uniaxial anisotropy because the ratio of saturation remanence J RS to saturation magnetization Js approaches 0.50 (JRS/JS = 0.46 on average). We show that the uniaxial anisotropy is very likely magnetostrictively controlled through internal stresses σi in the titanomaghemite grains. This allows us to use a novel indirect method to estimate the saturation magnetostriction λS of the titanomaghemite. A saturation remanence J RS is given along the axis of a cylindrical sample of each basalt. Then a small compression σ is applied repeatedly along this axis and the reversible change ∆JRS in JRS is measured. Combining equations from single-domain theory for this piezomagnetic effect and for the sample’s coercive force HC gives λS = 1.39HCJS 1/σ ∆JRS/JRS (using cgs units, or with HC in mT, J S in kA m and σ in Pa). This yields four λS estimates (with ca 50 per cent expected error) ranging from 3 × 10−6 to 10 × 10−6 and averaging 6 × 10−6. Theory for the piezomagnetic effect yields four σ i estimates averaging 2 × 108 Pa. This is similar to the internal stress magnitude thought to be responsible for the high coercivity of ball-milled single-domain titanomagnetite (x ≈ 0.6) and natural single-domain haematite. We also show that cooling to 120 ◦K causes HC J S for each oceanic basalt to vary in approximate proportion to (1− T TC)n with n between 1.9 and 2.0 (where T is temperature and T C is Curie point, both in ◦K). This implies that λS of titanomaghemite with x ≈ 0.55 and z ≈ 0.9 also varies in approximate proportion to (1− T TC)n with n near 1.9 or 2.0 on cooling to 120 ◦K (assuming that σ i remains constant on cooling). Our results support the hypothesis that coercivity (magnetic stability) is often magnetostrictively controlled by internal stresses in the highly oxidized titanomaghemites typical of oceanic basalts older than ca 10 Myr.We suggest that this hypothesis can be further tested by more extensive observation of whether cooling to 120 ◦K often causes HC J S of such basalts to vary in approximate proportion to (1 − T TC)n with n near 1.9 or 2.0

    A statistical method for retrospective cardiac and respiratory motion gating of interventional cardiac x-ray images

    Get PDF
    Purpose: Image-guided cardiac interventions involve the use of fluoroscopic images to guide the insertion and movement of interventional devices. Cardiorespiratory gating can be useful for 3D reconstruction from multiple x-ray views and for reducing misalignments between 3D anatomical models overlaid onto fluoroscopy. Methods: The authors propose a novel and potentially clinically useful retrospective cardiorespiratory gating technique. The principal component analysis (PCA) statistical method is used in combination with other image processing operations to make our proposed masked-PCA technique suitable for cardiorespiratory gating. Unlike many previously proposed techniques, our technique is robust to varying image-content, thus it does not require specific catheters or any other optically opaque structures to be visible. Therefore, it works without any knowledge of catheter geometry. The authors demonstrate the application of our technique for the purposes of retrospective cardiorespiratory gating of normal and very low dose x-ray fluoroscopy images. Results: For normal dose x-ray images, the algorithm was validated using 28 clinical electrophysiology x-ray fluoroscopy sequences (2168 frames), from patients who underwent radiofrequency ablation (RFA) procedures for the treatment of atrial fibrillation and cardiac resynchronization therapy procedures for heart failure. The authors established end-systole, end-expiration, and end-inspiration success rates of 97.0%, 97.9%, and 97.0%, respectively. For very low dose applications, the technique was tested on ten x-ray sequences from the RFA procedures with added noise at signal to noise ratio (SNR) values of √50, √10, √8, √6, √5, √2 and √1 to simulate the image quality of increasingly lower dose x-ray images. Even at the low SNR value of √2, representing a dose reduction of more than 25 times, gating success rates of 89.1%, 88.8%, and 86.8% were established. Conclusions: The proposed technique can therefore extract useful information from interventional x-ray images while minimizing exposure to ionizing radiation. © 2014 American Association of Physicists in Medicine

    Control of Neural Daughter Cell Proliferation by Multi-level Notch/Su(H)/E(spl)-HLH Signaling

    Get PDF
    The Notch pathway controls proliferation during development and in adulthood, and is frequently affected in many disorders. However, the genetic sensitivity and multi-layered transcriptional properties of the Notch pathway has made its molecular decoding challenging. Here, we address the complexity of Notch signaling with respect to proliferation, using the developing Drosophila CNS as model. We find that a Notch/Su(H)/E(spl)-HLH cascade specifically controls daughter, but not progenitor proliferation. Additionally, we find that different E(spl)-HLH genes are required in different neuroblast lineages. The Notch/Su(H)/E(spl)-HLH cascade alters daughter proliferation by regulating four key cell cycle factors: Cyclin E, String/Cdc25, E2f and Dacapo (mammalian p21CIP1/p27KIP1/p57Kip2). ChIP and DamID analysis of Su(H) and E(spl)-HLH indicates direct transcriptional regulation of the cell cycle genes, and of the Notch pathway itself. These results point to a multi-level signaling model and may help shed light on the dichotomous proliferative role of Notch signaling in many other systems

    ‘Forgotten Europeans’: transnational minority activism in the age of European integration

    Get PDF
    YesThis article examines transnational activism by coalitions of national minorities in Europe from the early 20th century to the present, setting this within the broader ‘security versus democracy dilemma’ that continues to surround international discussions on minority rights. Specifically, we analyse two organisations – the European Nationalities Congress (1925–1938) and the Federal Union of European Nationalities (1949–) – which, while linked, have never been subject to a detailed comparison based on primary sources. In so far as comparisons do exist, they present these bodies in highly negative terms, as mere fronts for inherently particularistic nationalisms that threaten political stability, state integrity and peace. Our more in‐depth analysis provides a fresh and more nuanced perspective: it shows that, in both cases, concepts of European integration and ‘unity in diversity’ have provided the motivating goals and frameworks for transnational movements advocating common rights for all minorities and seeking positive interaction with the interstate world

    Effects of Dopamine on Sensitivity to Social Bias in Parkinson's Disease

    Get PDF
    Patients with Parkinson's disease (PD) sometimes develop impulsive compulsive behaviours (ICBs) due to their dopaminergic medication. We compared 26 impulsive and 27 non-impulsive patients with PD, both on and off medication, on a task that examined emotion bias in decision making. No group differences were detected, but patients on medication were less biased by emotions than patients off medication and the strongest effects were seen in patients with ICBs. PD patients with ICBs on medication also showed more learning from negative feedback and less from positive feedback, whereas off medication they showed the opposite effect

    Notch inhibits Yorkie activity in Drosophila wing discs.

    Get PDF
    During development, tissues and organs must coordinate growth and patterning so they reach the right size and shape. During larval stages, a dramatic increase in size and cell number of Drosophila wing imaginal discs is controlled by the action of several signaling pathways. Complex cross-talk between these pathways also pattern these discs to specify different regions with different fates and growth potentials. We show that the Notch signaling pathway is both required and sufficient to inhibit the activity of Yorkie (Yki), the Salvador/Warts/Hippo (SWH) pathway terminal transcription activator, but only in the central regions of the wing disc, where the TEAD factor and Yki partner Scalloped (Sd) is expressed. We show that this cross-talk between the Notch and SWH pathways is mediated, at least in part, by the Notch target and Sd partner Vestigial (Vg). We propose that, by altering the ratios between Yki, Sd and Vg, Notch pathway activation restricts the effects of Yki mediated transcription, therefore contributing to define a zone of low proliferation in the central wing discs
    corecore