991 research outputs found

    Consolidated bioprocessing of starchy substrates into ethanol by industrial Saccharomyces cerevisiae strains secreting fungal amylases

    Get PDF
    The development of a yeast strain that converts raw starch to ethanol in one step (called Consolidated Bioprocessing, CBP) could significantly reduce the commercial costs of starch-based bioethanol. An efficient amylolytic Saccharomyces cerevisiae strain suitable for industrial bioethanol production was developed in this study. Codon-optimized variants of the Thermomyces lanuginosus glucoamylase (TLG1) and Saccharomycopsis fibuligera -amylase (SFA1) genes were -integrated into two S. cerevisiae yeast with promising industrial traits, i.e., strains M2n and MEL2. The recombinant M2n[TLG1-SFA1] and MEL2[TLG1-SFA1] yeast displayed high enzyme activities on soluble and raw starch (up to 8118 and 4461nkat/g dry cell weight, respectively) and produced about 64g/L ethanol from 200g/L raw corn starch in a bioreactor, corresponding to 55% of the theoretical maximum ethanol yield (g of ethanol/g of available glucose equivalent). Their starch-to-ethanol conversion efficiencies were even higher on natural sorghum and triticale substrates (62 and 73% of the theoretical yield, respectively). This is the first report of direct ethanol production from natural starchy substrates (without any pre-treatment or commercial enzyme addition) using industrial yeast strains co-secreting both a glucoamylase and -amylase

    Shear Thinning Properties of Sorghum and Corn Starches

    Get PDF
    The paste viscosities of sorghum and corn starches were studied with a Brabender viscograph. Sorghum starches and the laboratory-prepared corn starch gave higher paste consistencies than did the two commercial corn starches. Considerable variation existed in shear thinning of starches. In general, sorghum starches shear-thinned more than corn starches, although certain sorghum starches gave low shear thinning. When the hot pastes were sheared at high speed, sorghum starches thinned more than corn starches. The gelatinization characteristics did not appear to be related to shear thinning of sorghum starches. Swelling power at 95 C was lower for corn starch than it was for sorghum starch. Solubility of both corn and sorghum starches at 95 C varied among the cultivars. The reasons for high shear thinning of certain sorghums requires further investigation

    Factors Affecting the Color and Appearance of Sorghum Starch

    Get PDF
    Seven cultivars of grain sorghum with various seed colors were studied for the presence of light-absorbing substances in the grain and starch. A corn sample was used for comparison. Starch was isolated from both sorghum and corn. Corn starch was bright in appearance and had a yellowish tinge. Sorghum starch from the cultivars Dorado, UANL-1-V-187, and Blanco 88 was also bright in appearance and white; the seed color was pale yellow. Although Sorghum cultivar Dekalb 42Y had a pale yellow seed color, it yielded a dull-appearing starch. Kansas local, Bajio, and Tamaulipas cultivars had reddish-brown seed color and also yielded dull-appearing starch that had a reddish tint. It appears that the presence of certain alcohol-soluble components contributes to the dullness of some sorghum starches, because extraction of dull starch with methanol resulted in a brighter starch. Dehulling of the grain before starch isolation improved the appearance of starch. A simple alkali test on the grain was effective in predicting the dullness of starch

    Delayed gastric emptying and reduced postprandial small bowel water content of equicaloric whole meal bread versus rice meals in healthy subjects: novel MRI insights

    Get PDF
    BACKGROUND/OBJECTIVES: Postprandial bloating is a common symptom in patients with functional gastrointestinal (GI) diseases. Whole meal bread (WMB) often aggravates such symptoms though the mechanisms are unclear. We used magnetic resonance imaging (MRI) to monitor the intragastric fate of a WMB meal (11% bran) compared to a rice pudding (RP) meal. SUBJECTS/METHODS: 12 healthy volunteers completed this randomised crossover study. They fasted overnight and after an initial MRI scan consumed a glass of orange juice with a 2267 kJ WMB or an equicaloric RP meal. Subjects underwent serial MRI scans every 45 min up to 270 min to assess gastric volumes and small bowel water content and completed a GI symptom questionnaire. RESULTS: The MRI intragastric appearance of the two meals was markedly different. The WMB meal formed a homogeneous dark bolus with brighter liquid signal surrounding it. The RP meal separated into an upper, liquid layer and a lower particulate layer allowing more rapid emptying of the liquid compared to solid phase (sieving). The WMB meal had longer gastric half emptying times (132±8 min) compared to the RP meal (104±7 min), P<0.008. The WMB meal was associated with markedly reduced MRI-visible small bowel free mobile water content compared to the RP meal, P<0.0001. CONCLUSIONS: WMB bread forms a homogeneous bolus in the stomach which inhibits gastric sieving and hence empties slower than the equicaloric rice meal. These properties may explain why wheat causes postprandial bloating and could be exploited to design foods which prolong satiation

    Physicochemical properties and structural characteristics of whole grain Oryza sativa L. with different treatments

    Get PDF
    [EN] Physicochemical properties and structural characteristics of whole rice flours with different treatments (soaking, germination and extrusion cooking) were studied. Water solubility, water absorption, crystallinity, adsorption isotherms (BET and GAB models), and glass transition temperature of the samples were determined. Water solubility and water absorption were enhanced by extrusion cooking process (3.17 4.98 vs. 24.1 53.76 g/100 g and 2.77 3.05 vs. 4.46 7.04 ml/g, respectively), but crystallinity was decreased (30 33 vs. 4 16%). Adsorption isotherms showed that extruded samples exhibited higher equilibrium moisture content as compared with their corresponding non-extruded samples (5.0 19.2 vs. 4.0 16.1 g water/g solids). There were no changes in glass transition temperature values in the studied moisture range (3.8 16 g/100 g). These results allow the correct use of whole rice flours with different treatments in foods and also contributed to the knowledge of stabilization of the productsThe author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was partially financed by ANPCYT (PICT 1105) and ERASMUS MUNDUS ACTION 2 ARCOIRIS Fellowship.Albarracin, M.; Talens Oliag, P.; Martínez Navarrete, N.; González, RJ.; Drago, SR. (2016). Physicochemical properties and structural characteristics of whole grain Oryza sativa L. with different treatments. Food Science and Technology International. 22(4):1-10. doi:10.1177/1082013215600078S110224Albarracín, M., José González, R., & Drago, S. R. (2015). Soaking and extrusion effects on physicochemical parameters, phytic acid, nutrient content and mineral bio-accessibility of whole rice grain. International Journal of Food Sciences and Nutrition, 66(2), 210-215. doi:10.3109/09637486.2014.986070Björck, I., & Asp, N.-G. (1983). The effects of extrusion cooking on nutritional value — A literature review. Journal of Food Engineering, 2(4), 281-308. doi:10.1016/0260-8774(83)90016-xBrunauer, S., Deming, L. S., Deming, W. E., & Teller, E. (1940). On a Theory of the van der Waals Adsorption of Gases. Journal of the American Chemical Society, 62(7), 1723-1732. doi:10.1021/ja01864a025Donkor, O. N., Stojanovska, L., Ginn, P., Ashton, J., & Vasiljevic, T. (2012). Germinated grains – Sources of bioactive compounds. Food Chemistry, 135(3), 950-959. doi:10.1016/j.foodchem.2012.05.058Gonzalez, R. J., De Greef, D. M., Torres, R. L., Borras, F. S., & Robutti, J. (2004). Effects of endosperm hardness and extrusion temperature on properties of products obtained with grits from two commercial maize cultivars. LWT - Food Science and Technology, 37(2), 193-198. doi:10.1016/j.lwt.2003.07.004Gonzalez, R., Drago, S., Torres, R., & De Greef, D. (2013). Extrusion Cooking of Cereal-Based Products. Contemporary Food Engineering. doi:10.1201/b15246-13González, R. J., Pastor Cavada, E., Vioque Peña, J., Torres, R. L., De Greef, D. M., & Drago, S. R. (2013). Extrusion Conditions and Amylose Content Affect Physicochemical Properties of Extrudates Obtained from Brown Rice Grains. International Journal of Food Science, 2013, 1-8. doi:10.1155/2013/584148Herawat, H., Kusnandar, F., Adawiyah, D. R., Budijanto, S., & Rahman, M. S. (2014). Thermal characteristics and state diagram of extruded instant artificial rice. Thermochimica Acta, 593, 50-57. doi:10.1016/j.tca.2014.08.017Jones, J. M., & Engleson, J. (2010). Whole Grains: Benefits and Challenges. Annual Review of Food Science and Technology, 1(1), 19-40. doi:10.1146/annurev.food.112408.132746Kim, H. Y., Hwang, I. G., Kim, T. M., Woo, K. S., Park, D. S., Kim, J. H., … Jeong, H. S. (2012). Chemical and functional components in different parts of rough rice (Oryza sativa L.) before and after germination. Food Chemistry, 134(1), 288-293. doi:10.1016/j.foodchem.2012.02.138Lowry, R. R., & Tinsley, I. J. (1976). Rapid colorimetric determination of free fatty acids. Journal of the American Oil Chemists’ Society, 53(7), 470-472. doi:10.1007/bf02636814Matveev, Y. (2000). The plasticizing effect of water on proteins, polysaccharides and their mixtures. Glassy state of biopolymers, food and seeds. Food Hydrocolloids, 14(5), 425-437. doi:10.1016/s0268-005x(00)00020-5Perdon, A., Siebenmorgen, T. J., & Mauromoustakos, A. (2000). Glassy State Transition and Rice Drying: Development of a Brown Rice State Diagram. Cereal Chemistry Journal, 77(6), 708-713. doi:10.1094/cchem.2000.77.6.708ROOS, Y., & KAREL, M. (1991). Plasticizing Effect of Water on Thermal Behavior and Crystallization of Amorphous Food Models. Journal of Food Science, 56(1), 38-43. doi:10.1111/j.1365-2621.1991.tb07970.xRuiz-Ruiz, J., Martínez-Ayala, A., Drago, S., González, R., Betancur-Ancona, D., & Chel-Guerrero, L. (2008). Extrusion of a hard-to-cook bean (Phaseolus vulgaris L.) and quality protein maize (Zea mays L.) flour blend. LWT - Food Science and Technology, 41(10), 1799-1807. doi:10.1016/j.lwt.2008.01.005SIU, G. M., & DRAPER, H. H. (1978). A SURVEY OF THE MALONALDEHYDE CONTENT OF RETAIL MEATS AND FISH. Journal of Food Science, 43(4), 1147-1149. doi:10.1111/j.1365-2621.1978.tb15256.xSun, Z., Yang, W., Siebenmorgen, T., Stelwagen, A., & Cnossen, A. (2002). Thermomechanical Transitions of Rice Kernels. Cereal Chemistry Journal, 79(3), 349-353. doi:10.1094/cchem.2002.79.3.349Timmermann, E. O. (2003). Multilayer sorption parameters: BET or GAB values? Colloids and Surfaces A: Physicochemical and Engineering Aspects, 220(1-3), 235-260. doi:10.1016/s0927-7757(03)00059-1Tovar, J., Bjoerck, I. M., & Asp, N. G. (1990). Starch content and .alpha.-amylolysis rate in precooked legume flours. Journal of Agricultural and Food Chemistry, 38(9), 1818-1823. doi:10.1021/jf00099a00

    Mashing with unmalted sorghum using a novel low temperature enzyme system: impacts of sorghum grain composition and microstructure

    Get PDF
    Brewing lager beers from unmalted sorghum traditionally requires the use of high temperature mashing and exogenous enzymes to ensure adequate starch conversion. Here, a novel low-temperature mashing system is compared to a more traditional mash in terms of the wort quality produced (laboratory scale) from five unmalted sorghums (2 brewing and 3 non-brewing varieties). The low temperature mash generated worts of comparable quality to those resulting from a traditional energy intensive mash protocol. Furthermore, its performance was less dependent on sorghum raw material quality, such that it may facilitate the use of what were previously considered non-brewing varieties. Whilst brewing sorghums were of lower protein content, protein per se did not correlate with mashing performance. Rather, it was the way in which protein was structured (particularly the strength of protein starch interactions) which most influenced brewing performance. RVA profile was the easiest way of identifying this characteristic as potentially problematic

    Starch Plastic Packaging and Agriculture Applications

    Get PDF
    Paper constitutes the most important material in the United States for packaging and containers largely because of its low cost and wide availability (WPO, 2008). It is also perceived as a sustainable material because it is derived from plants and is recycled at a very high percentage (62%) (EPA, 2010). Plastic ranks as the second most used packaging material in the United States. Plastics can provide transparency, greater moisture protection, and various mechanical properties that are superior to paper packaging. Consequently, some types of plastic packaging continue to grow faster than other packaging materials (WPO, 2008). In contrast to paper, only 7% of plastic generated as waste is recycled. This explains why more plastics ultimately end up in landfills than paper or any other packaging material (EPA, 2010). Plastic processors worldwide are becoming increasingly aware that environmentally sustainable packaging has become mainstream. It can no longer be considered only a niche market that can be ignored or given token attention. Informed consumers are demanding sustainable packaging; state and local governments are mandating it; and now, even the largest retailers are building it into the foundation of their marketing strategies (Deligio, 2009; Wood, 2010)
    • …
    corecore