89 research outputs found

    Effect of Pictorial Depth Cues, Binocular Disparity Cues and Motion Parallax Depth Cues on Lightness Perception in Three-Dimensional Virtual Scenes

    Get PDF
    Surface lightness perception is affected by scene interpretation. There is some experimental evidence that perceived lightness under bi-ocular viewing conditions is different from perceived lightness in actual scenes but there are also reports that viewing conditions have little or no effect on perceived color. We investigated how mixes of depth cues affect perception of lightness in three-dimensional rendered scenes containing strong gradients of illumination in depth.Observers viewed a virtual room (4 m width x 5 m height x 17.5 m depth) with checkerboard walls and floor. In four conditions, the room was presented with or without binocular disparity (BD) depth cues and with or without motion parallax (MP) depth cues. In all conditions, observers were asked to adjust the luminance of a comparison surface to match the lightness of test surfaces placed at seven different depths (8.5-17.5 m) in the scene. We estimated lightness versus depth profiles in all four depth cue conditions. Even when observers had only pictorial depth cues (no MP, no BD), they partially but significantly discounted the illumination gradient in judging lightness. Adding either MP or BD led to significantly greater discounting and both cues together produced the greatest discounting. The effects of MP and BD were approximately additive. BD had greater influence at near distances than far.These results suggest the surface lightness perception is modulated by three-dimensional perception/interpretation using pictorial, binocular-disparity, and motion-parallax cues additively. We propose a two-stage (2D and 3D) processing model for lightness perception

    The emergence of functional microcircuits in visual cortex.

    No full text
    Sensory processing occurs in neocortical microcircuits in which synaptic connectivity is highly structured and excitatory neurons form subnetworks that process related sensory information. However, the developmental mechanisms underlying the formation of functionally organized connectivity in cortical microcircuits remain unknown. Here we directly relate patterns of excitatory synaptic connectivity to visual response properties of neighbouring layer 2/3 pyramidal neurons in mouse visual cortex at different postnatal ages, using two-photon calcium imaging in vivo and multiple whole-cell recordings in vitro. Although neural responses were already highly selective for visual stimuli at eye opening, neurons responding to similar visual features were not yet preferentially connected, indicating that the emergence of feature selectivity does not depend on the precise arrangement of local synaptic connections. After eye opening, local connectivity reorganized extensively: more connections formed selectively between neurons with similar visual responses and connections were eliminated between visually unresponsive neurons, but the overall connectivity rate did not change. We propose a sequential model of cortical microcircuit development based on activity-dependent mechanisms of plasticity whereby neurons first acquire feature preference by selecting feedforward inputs before the onset of sensory experience--a process that may be facilitated by early electrical coupling between neuronal subsets--and then patterned input drives the formation of functional subnetworks through a redistribution of recurrent synaptic connections

    Toward Precision Psychiatry: Statistical Platform for the Personalized Characterization of Natural Behaviors.

    Get PDF
    There is a critical need for new analytics to personalize behavioral data analysis across different fields, including kinesiology, sports science, and behavioral neuroscience. Specifically, to better translate and integrate basic research into patient care, we need to radically transform the methods by which we describe and interpret movement data. Here, we show that hidden in the "noise," smoothed out by averaging movement kinematics data, lies a wealth of information that selectively differentiates neurological and mental disorders such as Parkinson's disease, deafferentation, autism spectrum disorders, and schizophrenia from typically developing and typically aging controls. In this report, we quantify the continuous forward-and-back pointing movements of participants from a large heterogeneous cohort comprising typical and pathological cases. We empirically estimate the statistical parameters of the probability distributions for each individual in the cohort and report the parameter ranges for each clinical group after characterization of healthy developing and aging groups. We coin this newly proposed platform for individualized behavioral analyses "precision phenotyping" to distinguish it from the type of observational-behavioral phenotyping prevalent in clinical studies or from the "one-size-fits-all" model in basic movement science. We further propose the use of this platform as a unifying statistical framework to characterize brain disorders of known etiology in relation to idiopathic neurological disorders with similar phenotypic manifestations

    Variation in limb loading magnitude and timing in tetrapods

    Get PDF
    Comparative analyses of locomotion in tetrapods reveal two patterns of stride cycle variability. Tachymetabolic tetrapods (birds and mammals) have lower inter-cycle variation in stride duration than bradymetabolic tetrapods (amphibians, lizards, turtles, and crocodilians). This pattern has been linked to the fact that birds and mammals share enlarged cerebella, relatively enlarged and heavily myelinated Ia afferents, and Îł-motoneurons to their muscle spindles. Tachymetabolic tetrapod lineages also both possess an encapsulated Golgi tendon morphology, thought to provide more spatially precise information on muscle tension. The functional consequence of this derived Golgi tendon morphology has never been tested. We hypothesized that one advantage of precise information on muscle tension would be lower and more predictable limb bone stresses, achieved in tachymetabolic tetrapods by having less variable substrate reaction forces than bradymetabolic tetrapods. To test this hypothesis, we analyzed hindlimb substrate reaction forces during locomotion of 55 tetrapod species in a phylogenetic comparative framework. Variation in species-means of limb loading magnitude and timing confirm that, for most of the variables analyzed, variance in hindlimb loading and timing is significantly lower in species with encapsulated versus unencapsulated Golgi tendon organs. These findings suggest that maintaining predictable limb loading provides a selective advantage for birds and mammals by allowing for energy-savings during locomotion, lower limb bone safety factors, and quicker recovery from perturbations. The importance of variation in other biomechanical variables in explaining these patterns, such as posture, effective mechanical advantage, and center-of-mass mechanics, remains to be clarified

    Physical change and style of life.

    No full text
    The modern world is one in which there is rapid change, but as far as people in the human professions are concerned, the real meaning of this change is "the effect it has upon people...people must change, must acquire an accustomed facility for change if they are to live in the modern world." Because social change has come to be seen as a necessary adjunct of continuing scientific and technological change, the emphasis of the social work profession is shifting from therepeutic to preventative. In order to make change most positive, the effects should be anticipated and planned for. [...
    • …
    corecore