17 research outputs found

    Paracoccidioides brasilinsis-Induced Migration of Dendritic Cells and Subsequent T-Cell Activation in the Lung-Draining Lymph Nodes

    Get PDF
    Paracoccidioidomycosis is a mycotic disease caused by a dimorphic fungus, Paracoccidioides brasiliensis (Pb), that starts with inhalation of the fungus; thus, lung cells such as DC are part of the first line of defense against this microorganism. Migration of DC to the lymph nodes is the first step in initiating T cell responses. The mechanisms involved in resistance to Pb infection are poorly understood, but it is likely that DC play a pivotal role in the induction of effector T cells that control Pb infection. In this study, we showed that after Pb Infection, an important modification of lung DC receptor expression occurred. We observed an increased expression of CCR7 and CD103 on lung DC after infection, as well as MHC-II. After Pb infection, bone marrow-derived DC as well lung DC, migrate to lymph nodes. Migration of lung DC could represent an important mechanism of pathogenesis during PCM infection. In resume our data showed that Pb induced DC migration. Furthermore, we demonstrated that bone marrow-derived DC stimulated by Pb migrate to the lymph nodes and activate a T helper (Th) response. To the best of our knowledge, this is the first reported data showing that Pb induces migration of DC and activate a T helper (Th) response

    FMS-like tyrosine kinase 3 ligand treatment of mice aggravates acute lung injury in response to Streptococcus pneumoniae: Role of pneumolysin

    No full text
    FMS-like tyrosine kinase-3 ligand (Flt3L) is a dendritic cell (DC) growth and differentiation factor with potential in antitumor therapies and antibacterial immunization strategies. However, the effect of systemic Flt3L treatment on lung-protective immunity against bacterial infection is incompletely defined. Here, we examined the impact of deficient (in Flt3L knockout [KO] mice), normal (in wild-type [WT] mice), or increased Flt3L availability (in WT mice pretreated with Flt3L for 3, 5, or 7 days) on lung DC subset profiles and lung-protective immunity against the major lung-tropic pathogen, Streptococcus pneumoniae. Although in Flt3L-deficient mice the numbers of DCs positive for CD11b (CD11b(pos) DCs) and for CD103 (CD103(pos) DCs) were diminished, lung permeability, a marker of injury, was unaltered in response to S. pneumoniae. In contrast, WT mice pretreated with Flt3L particularly responded with increased numbers of CD11b(pos) DCs and with less pronounced numbers of CD103(pos) DCs and impaired bacterial clearance and with increased lung permeability following S. pneumoniae challenge. Notably, infection of Flt3L-pretreated mice with S. pneumoniae lacking the pore-forming toxin, pneumolysin (PLY), resulted in substantially less lung CD11b(pos) DCs activation and reduced lung permeability. Collectively, this study establishes that Flt3L treatment enhances the accumulation of proinflammatory activated lung CD11b(pos) DCs which contribute to acute lung injury in response to PLY released by S. pneumoniae.Christina Brumshagen, Regina Maus, Andrea Bischof, Bianca Ueberberg, Jennifer Bohling, John J. Osterholzer, Abiodun D. Ogunniyi, James C. Paton, Tobias Welte, and Ulrich A. Mau

    The role of lung dendritic cell subsets in immunity to respiratory viruses

    No full text
    Viral infections are a common cause of acute respiratory disease. The clinical course of infection and symptoms depend on the viral strain, the health status of the host, and the immunological status of the host. Dendritic cells (DCs) play a crucial role in recognizing and presenting viral antigens and in inducing adaptive immune responses that clear the virus. Because the lung is continuously exposed to the air, the lung is equipped with an elaborate network of DCs to sense incoming foreign pathogens. Increasing knowledge on DC biology has informed us that DCs are not a single cell type. In the steady state lung, three DC subsets can be defined: CD11b(+) or CD103(+) conventional DCs and plasmacytoid DCs. Upon inflammation, inflammatory monocyte-derived DCs are recruited to the lung. It is only recently that tools became available to allow DC subsets to be clearly studied. This review focuses on the activation of DCs and the function of lung DCs in the context of respiratory virus infection and highlights some cautionary points for interpreting older experiments
    corecore