26 research outputs found

    Gender Differences in Associations of Glutamate Decarboxylase 1 Gene (GAD1) Variants with Panic Disorder

    Get PDF
    Background: Panic disorder is common (5% prevalence) and females are twice as likely to be affected as males. The heritable component of panic disorder is estimated at 48%. Glutamic acid dehydrogenase GAD1, the key enzyme for the synthesis of the inhibitory and anxiolytic neurotransmitter GABA, is supposed to influence various mental disorders, including mood and anxiety disorders. In a recent association study in depression, which is highly comorbid with panic disorder, GAD1 risk allele associations were restricted to females. Methodology/Principal Findings: Nineteen single nucleotide polymorphisms (SNPs) tagging the common variation in GAD1 were genotyped in two independent gender and age matched case-control samples (discovery sample n = 478; replication sample n = 584). Thirteen SNPs passed quality control and were examined for gender-specific enrichment of risk alleles associated with panic disorder by using logistic regression including a genotype×gender interaction term. The latter was found to be nominally significant for four SNPs (rs1978340, rs3762555, rs3749034, rs2241165) in the discovery sample; of note, the respective minor/risk alleles were associated with panic disorder only in females. These findings were not confirmed in the replication sample; however, the genotype×gender interaction of rs3749034 remained significant in the combined sample. Furthermore, this polymorphism showed a nominally significant association with the Agoraphobic Cognitions Questionnaire sum score. Conclusions/Significance: The present study represents the first systematic evaluation of gender-specific enrichment of risk alleles of the common SNP variation in the panic disorder candidate gene GAD1. Our tentative results provide a possible explanation for the higher susceptibility of females to panic disorder

    Genetic effects influencing risk for major depressive disorder in China and Europe

    Get PDF
    Major depressive disorder (MDD) is a common, complex psychiatric disorder and a leading cause of disability worldwide. Despite twin studies indicating its modest heritability (similar to 30-40%), extensive heterogeneity and a complex genetic architecture have complicated efforts to detect associated genetic risk variants. We combined single-nucleotide polymorphism (SNP) summary statistics from the CONVERGE and PGC studies of MDD, representing 10 502 Chinese (5282 cases and 5220 controls) and 18 663 European (9447 cases and 9215 controls) subjects. We determined the fraction of SNPs displaying consistent directions of effect, assessed the significance of polygenic risk scores and estimated the genetic correlation of MDD across ancestries. Subsequent trans-ancestry meta-analyses combined SNP-level evidence of association. Sign tests and polygenic score profiling weakly support an overlap of SNP effects between East Asian and European populations. We estimated the trans-ancestry genetic correlation of lifetime MDD as 0.33; female-only and recurrent MDD yielded estimates of 0.40 and 0.41, respectively. Common variants downstream of GPHN achieved genome-wide significance by Bayesian trans-ancestry meta-analysis (rs9323497; log10 Bayes Factor = 8.08) but failed to replicate in an independent European sample (P= 0.911). Gene-set enrichment analyses indicate enrichment of genes involved in neuronal development and axonal trafficking. We successfully demonstrate a partially shared polygenic basis of MDD in East Asian and European populations. Taken together, these findings support a complex etiology for MDD and possible population differences in predisposing genetic factors, with important implications for future genetic studies

    Genome-wide Association Study of Borderline Personality Disorder Reveals Genetic Overlap with Bipolar Disorder, Major Depression and Schizophrenia

    Get PDF
    Borderline personality disorder (BOR) is determined by environmental and genetic factors, and characterized by affective instability and impulsivity, diagnostic symptoms also observed in manic phases of bipolar disorder (BIP). Up to 20% of BIP patients show comorbidity with BOR. This report describes the first case–control genome-wide association study (GWAS) of BOR, performed in one of the largest BOR patient samples worldwide. The focus of our analysis was (i) to detect genes and gene sets involved in BOR and (ii) to investigate the genetic overlap with BIP. As there is considerable genetic overlap between BIP, major depression (MDD) and schizophrenia (SCZ) and a high comorbidity of BOR and MDD, we also analyzed the genetic overlap of BOR with SCZ and MDD. GWAS, gene-based tests and gene-set analyses were performed in 998 BOR patients and 1545 controls. Linkage disequilibrium score regression was used to detect the genetic overlap between BOR and these disorders. Single marker analysis revealed no significant association after correction for multiple testing. Gene-based analysis yielded two significant genes: DPYD (P=4.42 × 10−7) and PKP4 (P=8.67 × 10−7); and gene-set analysis yielded a significant finding for exocytosis (GO:0006887, PFDR=0.019; FDR, false discovery rate). Prior studies have implicated DPYD, PKP4 and exocytosis in BIP and SCZ. The most notable finding of the present study was the genetic overlap of BOR with BIP (rg=0.28 [P=2.99 × 10−3]), SCZ (rg=0.34 [P=4.37 × 10−5]) and MDD (rg=0.57 [P=1.04 × 10−3]). We believe our study is the first to demonstrate that BOR overlaps with BIP, MDD and SCZ on the genetic level. Whether this is confined to transdiagnostic clinical symptoms should be examined in future studies

    Evidence of causal effect of major depression on alcohol dependence: findings from the psychiatric genomics consortium

    Get PDF
    BACKGROUND Despite established clinical associations among major depression (MD), alcohol dependence (AD), and alcohol consumption (AC), the nature of the causal relationship between them is not completely understood. We leveraged genome-wide data from the Psychiatric Genomics Consortium (PGC) and UK Biobank to test for the presence of shared genetic mechanisms and causal relationships among MD, AD, and AC. METHODS Linkage disequilibrium score regression and Mendelian randomization (MR) were performed using genome-wide data from the PGC (MD: 135 458 cases and 344 901 controls; AD: 10 206 cases and 28 480 controls) and UK Biobank (AC-frequency: 438 308 individuals; AC-quantity: 307 098 individuals). RESULTS Positive genetic correlation was observed between MD and AD (rgMD−AD = + 0.47, P = 6.6 × 10−10). AC-quantity showed positive genetic correlation with both AD (rgAD−AC quantity = + 0.75, P = 1.8 × 10−14) and MD (rgMD−AC quantity = + 0.14, P = 2.9 × 10−7), while there was negative correlation of AC-frequency with MD (rgMD−AC frequency = −0.17, P = 1.5 × 10−10) and a non-significant result with AD. MR analyses confirmed the presence of pleiotropy among these four traits. However, the MD-AD results reflect a mediated-pleiotropy mechanism (i.e. causal relationship) with an effect of MD on AD (beta = 0.28, P = 1.29 × 10−6). There was no evidence for reverse causation. CONCLUSION This study supports a causal role for genetic liability of MD on AD based on genetic datasets including thousands of individuals. Understanding mechanisms underlying MD-AD comorbidity addresses important public health concerns and has the potential to facilitate prevention and intervention efforts

    Integrated analysis of environmental and genetic influences on cord blood DNA methylation in new-borns

    Get PDF
    Epigenetic processes, including DNA methylation (DNAm), are among the mechanisms allowing integration of genetic and environmental factors to shape cellular function. While many studies have investigated either environmental or genetic contributions to DNAm, few have assessed their integrated effects. Here we examine the relative contributions of prenatal environmental factors and genotype on DNA methylation in neonatal blood at variably methylated regions (VMRs) in 4 independent cohorts (overall n = 2365). We use Akaike’s information criterion to test which factors best explain variability of methylation in the cohort-specific VMRs: several prenatal environmental factors (E), genotypes in cis (G), or their additive (G + E) or interaction (GxE) effects. Genetic and environmental factors in combination best explain DNAm at the majority of VMRs. The CpGs best explained by either G, G + E or GxE are functionally distinct. The enrichment of genetic variants from GxE models in GWAS for complex disorders supports their importance for disease ris
    corecore