896 research outputs found
Room temperature near-ultraviolet emission from In-rich InGaN/GaN multiple quantum wells
We grew In-rich InGaNGaN multiple quantum wells (MQWs) using growth interruption (GI) by metalorganic chemical vapor deposition. The quality of overgrown InGaNGaN QW layers in MQWs was largely affected by the crystalline quality and interfacial abruptness of the underlying QW layer. Introduction of 10 s GI was very effective in improving the crystalline quality and interfacial abruptness of InGaN QW layers, and we grew a ten periods of 1-nm -thick In-rich InGaNGaN MQW with 10 s GI and obtained a strong near-ultraviolet (UV) emission (~390 nm) at room temperature. We believe that use of less than 1-nm -thick In-rich InGaN MQW can be a candidate for near-UV source, which might replace the conventional low-indium content (<10%), thicker InGaN QW layer.open313
Electronic Liquid Crystal Phases of a Doped Mott Insulator
The character of the ground state of an antiferromagnetic insulator is
fundamentally altered upon addition of even a small amount of charge. The added
charges agglomerate along domain walls at which the spin correlations, which
may or may not remain long-ranged, suffer a phase shift. In two
dimensions, these domain walls are ``stripes'' which are either insulating, or
conducting, i.e. metallic rivers with their own low energy degrees of freedom.
However, quasi one-dimensional metals typically undergo a transition to an
insulating ordered charge density wave (CDW) state at low temperatures. Here it
is shown that such a transition is eliminated if the zero-point energy of
transverse stripe fluctuations is sufficiently large in comparison to the CDW
coupling between stripes. As a consequence, there exist novel,
liquid-crystalline low-temperature phases -- an electron smectic, with
crystalline order in one direction, but liquid-like correlations in the other,
and an electron nematic with orientational order but no long-range positional
order. These phases, which constitute new states of matter, can be either high
temperature supeconductors or two-dimensional anisotropic ``metallic''
non-Fermi liquids. Evidence for the new phases may already have been obtained
by neutron scattering experiments in the cuprate superconductor,
La_{1.6-x}Nd_{0.4}Sr_xCuO_{4}.Comment: 5 pages in RevTex with two figures in ep
Measuring every particle's size from three-dimensional imaging experiments
Often experimentalists study colloidal suspensions that are nominally
monodisperse. In reality these samples have a polydispersity of 4-10%. At the
level of an individual particle, the consequences of this polydispersity are
unknown as it is difficult to measure an individual particle size from
microscopy. We propose a general method to estimate individual particle radii
within a moderately concentrated colloidal suspension observed with confocal
microscopy. We confirm the validity of our method by numerical simulations of
four major systems: random close packing, colloidal gels, nominally
monodisperse dense samples, and nominally binary dense samples. We then apply
our method to experimental data, and demonstrate the utility of this method
with results from four case studies. In the first, we demonstrate that we can
recover the full particle size distribution {\it in situ}. In the second, we
show that accounting for particle size leads to more accurate structural
information in a random close packed sample. In the third, we show that crystal
nucleation occurs in locally monodisperse regions. In the fourth, we show that
particle mobility in a dense sample is correlated to the local volume fraction.Comment: 7 pages, 5 figure
Ferroelectricity induced by interatomic magnetic exchange interaction
Multiferroics, where two or more ferroic order parameters coexist, is one of
the hottest fields in condensed matter physics and materials science[1-9].
However, the coexistence of magnetism and conventional ferroelectricity is
physically unfavoured[10]. Recently several remedies have been proposed, e.g.,
improper ferroelectricity induced by specific magnetic[6] or charge orders[2].
Guiding by these theories, currently most research is focused on frustrated
magnets, which usually have complicated magnetic structure and low magnetic
ordering temperature, consequently far from the practical application. Simple
collinear magnets, which can have high magnetic transition temperature, have
never been considered seriously as the candidates for multiferroics. Here, we
argue that actually simple interatomic magnetic exchange interaction already
contains a driving force for ferroelectricity, thus providing a new microscopic
mechanism for the coexistence and strong coupling between ferroelectricity and
magnetism. We demonstrate this mechanism by showing that even the simplest
antiferromagnetic (AFM) insulator MnO, can display a magnetically induced
ferroelectricity under a biaxial strain
An updated review of mucosal melanoma: Survival meta-analysis
Mucosal melanoma (MM) is a highly lethal variant of melanoma that carries a poor prognosis. Extremely low incidence and survival rates have led to few clinical trials, and a lack of protocols and guidelines. The present study performed a survival meta-analysis for the quantitative synthesis of available evidence to search for key patterns that would help clinicians tailor optimal therapeutic strategies in MM. PubMed, EMBASE, Cochrane, MEDLINE, Google Scholar and other databases were searched. Hazard ratios, in disease-specific and overall survival, were calculated for each of the survival-determining variables. MM was 2.25 times more lethal than cutaneous melanoma (CM). The most significant threats to survival were advanced Tumor-Node-Metastasis stage, sino-nasal location, and old age. Chemotherapy was the most effective form of adjuvant therapy. Disease-specific survival, the primary measure of the effect sizes, can fluctuate depending on the accuracy of the reported cause of mortality. In conclusion, MM is a peculiar type of melanoma, with clinical and molecular profile vastly different from the much-familiar CM. In the wake of the era of precision oncology, further studies on driver mutations and oncogenic pathways would likely lead to improved patient survival
Magnetic field-temperature phase diagram of multiferroic (NH4)2FeCl5??H2O
Owing to their overall low energy scales, flexible molecular architectures, and ease of chemical substitution, molecule-based multiferroics are extraordinarily responsive to external stimuli and exhibit remarkably rich phase diagrams. Even so, the stability and microscopic properties of various magnetic states in close proximity to quantum critical points are highly under-explored in these materials. Inspired by these opportunities, we combined pulsed-field magnetization, first-principles calculations, and numerical simulations to reveal the magnetic field???temperature (B???T) phase diagram of multiferroic (NH4)2FeCl5???H2O. In this system, a network of intermolecular hydrogen and halogen bonds creates a competing set of exchange interactions that generates additional structure in the phase diagram???both in the vicinity of the spin flop and near the 30 T transition to the fully saturated state. Consequently, the phase diagrams of (NH4)2FeCl5???H2O and its deuterated analog are much more complex than those of other molecule-based multiferroics. The entire series of coupled electric and magnetic transitions can be accessed with a powered magnet, opening the door to exploration and control of properties in this and related materials
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
Infiltrative hepatocellular carcinoma with multiple lung metastasis completely cured using nivolumab: a case report
The current Food and Drug Administration-approved systemic treatments for advanced hepatocellular carcinoma (HCC) include multikinase inhibitors (tyrosine kinase inhibitor [TKI]) and immune checkpoint inhibitors (ICIs). Among ICIs, nivolumab is used as second-line therapy for advanced HCC after sorafenib failure or patient intolerance. In this case, a patient with infiltrative HCC and portal vein tumor thrombosis was treated with hepatic arterial infusion chemotherapy (HAIC) and radiation therapy. New lung metastasis developed after HAICs; thus, lenvatinib treatment was initiated. However, the disease progressed. Thereafter, sorafenib treatment was initiated but he developed intolerance, with grade 3 sorafenib-related diarrhea. Subsequently, nivolumab was administered as rescue therapy. He demonstrated a partial response to nivolumab after the third treatment and viable HCCs in the lungs and liver completely disappeared after the 24th treatment. These findings suggest that nivolumab could be used as an effective rescue therapy for advanced HCC progression after TKI treatment
SGLT2i impact on HCC incidence in patients with fatty liver disease and diabetes: a nation-wide cohort study in South Korea
This study evaluated the effect of sodium-glucose cotransporter-2 inhibitors (SGLT2i) on cancer development, particularly in hepatocellular carcinoma (HCC), in individuals with concomitant fatty liver disease (FLD) and type 2 diabetes mellitus (T2DM). Using data from Korea's Health Insurance Review and Assessment Service, we performed Kaplan-Meier and Cox regression analyses in patients with non-alcoholic fatty liver disease (NAFLD) and T2DM (NAFLD-T2DM cohort) and those with chronic viral hepatitis (CVH) alongside FLD and T2DM (FLD-T2DM-CVH cohort). In the propensity score (PS) matched NAFLD-T2DM cohort (N = 107,972), SGLT2i use was not associated with the occurrence of overall cancer, including HCC. However, old age, male sex, liver cirrhosis, and hypothyroidism were identified as independent risk factors for HCC occurrence, whereas statin and fibrate usage were associated with reduced HCC risk in this cohort in multivariate Cox analysis. In the PS-matched FLD-T2DM-CVH cohort (N = 2798), a significant decrease in HCC occurrence was observed among SGLT2i users (P = 0.03). This finding remained consistent in the multivariate Cox regression analysis (Hazard ratio = 2.21, 95% confidence interval = 1.01-4.85, P = 0.048). In conclusion, SGLT2i may be a beneficial option for diabetes management in patients with concomitant T2DM, FLD, and CVH while affirming the overall safety of SGLT2i in other types of cancer
Preventive behaviors by the level of perceived infection sensitivity during the Korea outbreak of Middle East Respiratory Syndrome in 2015
OBJECTIVES: This study was performed to investigate the relationship between community residents' infection sensitivity and their levels of preventive behaviors during the 2015 Middle East Respiratory Syndrome (MERS) outbreak in Korea. METHODS: Seven thousands two hundreds eighty one participants from nine areas in Gyeonggi-do including Pyeongtaek, the origin of the outbreak in 2015 agreed to participate in the survey and the data from 6,739 participants were included in the final analysis. The data on the perceived infection sensitivity were subjected to cluster analysis. The levels of stress, reliability/practice of preventive behaviors, hand washing practice and policy credibility during the outbreak period were analyzed for each cluster. RESULTS: Cluster analysis of infection sensitivity due to the MERS outbreak resulted in classification of participants into four groups: the non-sensitive group (14.5%), social concern group (17.4%), neutral group (29.1%), and overall sensitive group (39.0%). A logistic regression analysis found that the overall sensitive group with high sensitivity had higher stress levels (17.80: 95% confidence interval [CI], 13.77 to 23.00), higher reliability on preventive behaviors (5.81: 95% CI, 4.84 to 6.98), higher practice of preventive behaviors (4.53: 95% CI, 3.83 to 5.37) and higher practice of hand washing (2.71: 95% CI, 2.13 to 3.43) during the outbreak period, compared to the non-sensitive group. CONCLUSIONS: Infection sensitivity of community residents during the MERS outbreak correlated with gender, age, occupation, and health behaviors. When there is an outbreak in the community, there is need to maintain a certain level of sensitivity while reducing excessive stress, as well as promote the practice of preventive behaviors among local residents. In particular, target groups need to be notified and policies need to be established with a consideration of the socio-demographic characteristics of the community
- …
