Often experimentalists study colloidal suspensions that are nominally
monodisperse. In reality these samples have a polydispersity of 4-10%. At the
level of an individual particle, the consequences of this polydispersity are
unknown as it is difficult to measure an individual particle size from
microscopy. We propose a general method to estimate individual particle radii
within a moderately concentrated colloidal suspension observed with confocal
microscopy. We confirm the validity of our method by numerical simulations of
four major systems: random close packing, colloidal gels, nominally
monodisperse dense samples, and nominally binary dense samples. We then apply
our method to experimental data, and demonstrate the utility of this method
with results from four case studies. In the first, we demonstrate that we can
recover the full particle size distribution {\it in situ}. In the second, we
show that accounting for particle size leads to more accurate structural
information in a random close packed sample. In the third, we show that crystal
nucleation occurs in locally monodisperse regions. In the fourth, we show that
particle mobility in a dense sample is correlated to the local volume fraction.Comment: 7 pages, 5 figure