The character of the ground state of an antiferromagnetic insulator is
fundamentally altered upon addition of even a small amount of charge. The added
charges agglomerate along domain walls at which the spin correlations, which
may or may not remain long-ranged, suffer a π phase shift. In two
dimensions, these domain walls are ``stripes'' which are either insulating, or
conducting, i.e. metallic rivers with their own low energy degrees of freedom.
However, quasi one-dimensional metals typically undergo a transition to an
insulating ordered charge density wave (CDW) state at low temperatures. Here it
is shown that such a transition is eliminated if the zero-point energy of
transverse stripe fluctuations is sufficiently large in comparison to the CDW
coupling between stripes. As a consequence, there exist novel,
liquid-crystalline low-temperature phases -- an electron smectic, with
crystalline order in one direction, but liquid-like correlations in the other,
and an electron nematic with orientational order but no long-range positional
order. These phases, which constitute new states of matter, can be either high
temperature supeconductors or two-dimensional anisotropic ``metallic''
non-Fermi liquids. Evidence for the new phases may already have been obtained
by neutron scattering experiments in the cuprate superconductor,
La_{1.6-x}Nd_{0.4}Sr_xCuO_{4}.Comment: 5 pages in RevTex with two figures in ep