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Magnetic field-temperature phase diagram of multiferroic
(NH4)2FeCl5·H2O
Amanda J. Clune 1, Jisoo Nam2, Minseong Lee 2, Kendall D. Hughey1, Wei Tian3, Jaime A. Fernandez-Baca 3,4, Randy S. Fishman 5,
John Singleton6, Jun Hee Lee2 and Janice L. Musfeldt 1,4

Owing to their overall low energy scales, flexible molecular architectures, and ease of chemical substitution, molecule-based
multiferroics are extraordinarily responsive to external stimuli and exhibit remarkably rich phase diagrams. Even so, the stability and
microscopic properties of various magnetic states in close proximity to quantum critical points are highly under-explored in these
materials. Inspired by these opportunities, we combined pulsed-field magnetization, first-principles calculations, and numerical
simulations to reveal the magnetic field–temperature (B–T) phase diagram of multiferroic (NH4)2FeCl5⋅H2O. In this system, a network
of intermolecular hydrogen and halogen bonds creates a competing set of exchange interactions that generates additional
structure in the phase diagram—both in the vicinity of the spin flop and near the 30 T transition to the fully saturated state.
Consequently, the phase diagrams of (NH4)2FeCl5⋅H2O and its deuterated analog are much more complex than those of other
molecule-based multiferroics. The entire series of coupled electric and magnetic transitions can be accessed with a powered
magnet, opening the door to exploration and control of properties in this and related materials.

npj Quantum Materials            (2019) 4:44 ; https://doi.org/10.1038/s41535-019-0180-1

INTRODUCTION
With their strong coupling between charge, structure, and
magnetism, multiferroics are ideal platforms for exploring
quantum phase transitions.1,2 These transitions are controlled by
external stimuli such as voltage, magnetic field, pressure, and light
—quite different from traditional phase transitions that rely upon
thermal fluctuations.3–9 Molecule-based multiferroics offer several
advantages over their oxide counterparts for the study of
quantum phase transitions. These include overall low-energy
scales, flexible molecular architectures, and ease of chemical
substitution.10–13 Thus, in addition to topological similarities with
oxide multiferroics, the molecular analogs tend to have lower
critical fields that are more easily reached in the laboratory.14–17 A
significant bottleneck to the investigation of molecule-based
multiferroics and their application for ultra low-power multi-state
memory, switching devices, and novel computing architectures18–21

is the inadequate understanding of the different equilibrium
states and their proximity to quantum critical points. Uncovering
the full magnetic field–temperature (B–T) phase diagram is a
significant step toward addressing these issues.10,22 At the same
time, revealing the nature of the various magnetic quantum phase
transitions and the character of the competing phases provides
important opportunities for property control and tests our
theoretical understanding of quantum magnets.10,15–17,23

These ideas can be explored in the erythrosiderites, the class of
compounds with chemical formula A2FeX5⋅H2O, where A is
ammonium or an alkali metal and X is a halide. We focus on
multiferroic (NH4)2FeCl5⋅H2O and its deuterated analog due to
their spontaneous electric polarization and unusual magnetic

behavior.24,25 The orthorhombic unit cell consists of four
octahedral [FeCl5⋅H2O]

2− groups and eight NHþ
4 ions that are all

symmetrically equivalent.24 Fig. 1c summarizes the temperature-
driven transitions. These include (i) an order–disorder transition
involving NHþ

4 [TO/D ≈ 79 K], (ii) the Néel transition below which
incommensurate-collinear sinusoidal magnetic order appears
[TN ≈ 7.25 K], and (iii) a transition to an incommensurate-cycloidal
spin state that supports a spontaneous electric polarization
primarily along the a-axis [TFE ≈ 6.9 K].26–29 A fascinating series of
spin and polarization flops occur with increasing magnetic
field.24,25 These magnetically-driven transitions will be discussed
in greater detail below. There is an abundance of hydrogen and
halogen bonding between neighboring [FeCl5⋅H2O]

2− octahedra.
As shown in Fig. 1a, b, these intermolecular interactions form a set
of superexchange pathways linking the Fe3+ S ¼ 5

2

� �
centers.28–31

The full set of magnetic interaction pathways includes Fe-O-H⋯Cl-
Fe, Fe-Cl⋯Cl-Fe, and Fe-Cl⋯O-Fe linkages. The magnetic interac-
tion through O-H⋯Cl is the strongest and forms a zig-zag chain
along the b-axis.24 As (NH4)2FeCl5⋅H2O is a type-II multiferroic,
polarization derives from the spin configuration. Therefore, one
cannot begin to understand polarization, polarization flops, and
magnetoelectric coupling without first examining the underlying
spin system and determining the B–T phase diagram.
We combined pulsed-field magnetization with complementary

first-principles calculations and numerical simulations to reveal the
magnetic properties and complete B–T phase diagram of multi-
ferroic (NH4)2FeCl5⋅H2O. Significantly, all of the magnetically driven
transitions—including that to the fully saturated state—are within
the range of experimentally available powered magnets. The
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overall complexity of the phase diagram arises from the
competing exchange pathways (J1–J5) produced by an elaborate
network of intermolecular hydrogen and halogen bonds. The
magnetic quantum phase transition and its satellites are the most
striking of the sequence, and the discovery of these structures is
one of the major factors that make this system a quantum
material. That they occur in a compound where the exchange
interactions consist entirely of intermolecular hydrogen and
halogen bonds but still sport similarities with other well-known
multiferroics such as TbMnO3 and MnWO4 is remarkable.32–37

Structure–property relations involving counterion substitution and
spin-state noncollinearity are also discussed.

RESULTS AND DISCUSSION
Magnetic properties and field-induced transitions in
(NH4)2FeCl5⋅H2O
Figure 2 summarizes the pulsed-field magnetization of
(NH4)2FeCl5⋅H2O and its deuterated analog. There are numerous
field-induced transitions depending on the isotropic decoration
and the direction of the applied field. They naturally separate into
two groups: (i) a series of low field spin reorientations below 6 T
and (ii) the saturation field and its satellites near 30 T. These
satellites are evident in Fig. 2e, f and are associated with
competing exchange pathways. They are discussed in detail
below. The low field features are small but clearly revealed for B ||
c, whereas they are more complicated for B || a. The transition to
the fully polarized state (BSat) is very distinct and occurs near 30 T
in each case. This is the energy scale above which all frustration is
relieved. Depending on the field direction, we find one or two
small satellites in the vicinity of BSat—evidence for a series of
quasi-isoenergetic phases near the quantum phase transition.
These values are summarized in Table 1.
The overall shape of the magnetization is consistent with

expectations for a three-dimensional (reasonably isotropic with
S > 1

2) material, with a linear rather than concave rise on approach
to BSat.

17 This is in line with our numerical modeling (discussed
below) from which we extract the various exchange interactions.

We can also estimate the value of the primary exchange
interaction from the size of the ultimate critical field. Taking BSat
= 30.3 T for the field along the c direction in the hydrogenated
sample and using a simple Hamiltonian38 with one exchange
constant H ¼ �ðJ=2ÞPi≠j Si � Sj � gμBB

P
i S

z
i , we extract J=

−1.32 K. This value is in reasonable agreement with J1 from our
modeling calculations. Here, the primary exchange interaction
corresponds to the Fe-O-H⋯Cl-Fe pathway as shown in Fig. 1b. It
also compares well with that of the isomorphic K2FeCl5⋅H2O
analog (J1=−1.65 K).31

The saturation fields in Table 1 reveal several interesting
structure–property relations. In each case, BSat ≈ 30 T, with modest
variations that depend upon isotopic substitution and field
direction. This suggests that the anisotropies and
Dyaloshinski–Moriya interactions are not large in (NH4)2FeCl5⋅H2O.
This is consistent with our predictions for small anisotropies,
summarized below. Additional evidence for overall three-
dimensional antiferromagnetism comes from the linear magneti-
zation between 5 and 30 T. We also find that BSat,D < BSat,H. This is a
very common trend—similar isotope effects were reported in [Ni
(HF2)(pyz-d4)2]SbF6 and CuF2(pyz)(H2O)2.

39,40 Deuteration typically
reduces the exchange interactions by a few percent, because a
heavier atom has a smaller excursion from its equilibrium position
in the anharmonic potential.39,40 Deuterium substitution also
tends to smear out the multiple lower field transitions. Moreover,
we find that BSat,a > BSat,c. This deviation from isotopic behavior is
probably related to g-factor anisotropy.17 There is also a more
complex set of magnetically driven transitions when B || a.

Uncovering the spin structure and magnetic exchange
interactions
To further explore these ideas, we carried out several different
numerical simulations, first to understand the zero-field ground
state and then to interpret the field-induced transitions. In zero
field, the Hamiltonian can be written as

H ¼ � 1
2

X

i≠j

JijSi � Sj � Kb
X

i

Sbi
� �2

; (1)
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Fig. 1 Crystal structure, exchange interactions, and energy scales. a Crystal structure of (NH4)2FeCl5⋅H2O at 300 K with five different exchange
interactions are represented with colored dash line. J1 pass between two water ligands (Fe-O-H⋯Cl-Fe). J2 and J3 pass between two Cl− ions
(Fe-Cl⋯Cl-Fe). J4 and J5 pass between two NHþ

4 ions (Fe-Cl⋯O-Fe). The magnetic coupling is three dimensional: strong quasi-two-dimensional
interactions with antiferromagnetically coupled planes. b Calculated J values against distance between Fe3+ ions. c Schematic depicting the
sequence of temperature and magnetic field transitions that occur in (NH4)2FeCl5⋅H2O. d Ratio of J interactions with respect to J1 depicting
how the collinear and non-collinear states are stabilized with respect to the nature of the counterion. The blue star in the non-collinear state
corresponds to (NH4)2FeCl5⋅H2O. The red star in the collinear state corresponds to K2FeCl5⋅H2O whose exchange constants are taken from ref. 31
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where Jij is the isotropic exchange interaction between Si and Sj,
Kb is the single-ion anisotropy, and Si are classical spin vectors. The
actual value of the parameters used in this simulation were
obtained from density functional theory (DFT). Details are
available in the Methods section and Supplementary Information.
Our numerical simulations produce spin structures that are

remarkably consistent with the experimental results (Fig. 3a).
Moreover, the experimentally observed wave vector of the spin
spiral is Q ≈ 0.228 ± 0.02 reciprocal lattice units26, which compares
well with the numerically calculated value of Q ≈ 0.205 ± 0.001
(the small difference in Q may be attributed to the effects of
single-ion anisotropy along the a- and c-axis). These results
demonstrate the validity of the exchange interaction parameters
obtained from DFT and our model Hamiltonian. To determine the
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Fig. 2 Pulsed-field magnetization of (NH4)2FeCl5⋅H2O and locating the critical fields. a, b Low temperature magnetization of (NH4)2FeCl5⋅H2O
and its deuterated analog for B || c. c, d Pulsed-field magnetization of (NH4)2FeCl5⋅H2O and its deuterated analog for B || a. The insets show a
close-up view of ∂M/∂B at low fields—in the vicinity of the series of metamagnetic transitions. Derivative of the magnetization in the vicinity of
the spin reorientation (e) and saturation fields (f) for (NH4)2FeCl5⋅H2O with fields applied || c

Table 1. Summary of the isotope decoration for (NH4)2FeCl5⋅H2O, our
different measurement directions, and the corresponding
magnetically-driven spin transitionsa

Isotope Field Critical fields (T) Critical fields (T) BSat
decoration direction near the spin flop near BSat (T)

H B || c 1.6, 3.7, 4.2 26.9, 28.6 30.3

H B || a 2.7, 3.4 29.0 31.1

D B || c 3.9 26.5, 28.4 30.1

D B || a 4.0, 5.1 28.1 30.3

aMeasurement temperatures were between 0.60 and 0.66 K for all materials
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origin of non-collinear spin structure, we investigated how
exchange interactions change the magnetic ground state.
Interestingly, even in the absence of J1, J3, and J5, we can
reproduce the non-collinear spin structure (Supplementary Fig.
S3). However, in the absence of J2 or J4, which form a triangular
plaquette (Fig. 1a), a collinear spin structure is stable. Therefore,
geometrical frustration with competing antiferromagnetic J2 and
J4 in a triangular lattice stabilizes the non-collinear spin state
propagating along the c direction.
The collinear spin structures observed in certain other

A2FeX5⋅D2O erythrosiderites can also be explained within this
framework, as J4 is mediated by the ammonium ions. The latter
have very different characteristics compared with alkaline ions.
The absence of ammonium ions relieves magnetic frustration by
making either J2 and/or J4 dominant. Moreover, the interactions
between triangular lattice planes are mediated by the strongest
antiferromagnetic exchange J1. This makes the spin spirals on the
different triangular lattice planes almost antiferromagnetic, a
prediction that has been experimentally confirmed.26 In triangular
lattice antiferromagnets, exotic magnetic ground states and
successive magnetic phase transitions have been observed.41

Thus, the series of magnetic phase transitions observed in field
also arises from the subtly competing exchange interactions in
this system. These calculations also suggest that pressure may
provide a pathway between the different A2FeX5⋅H2O materials
(Fig. 1d). As the phase diagram indicates, the spin-state transition
occurs with increasing J3/J1. We therefore speculate that uniaxial
pressure applied along J3 could induce a transition from a non-
collinear to collinear spin structure. On the other hand, hydrostatic

pressure is unlikely to induce a magnetoelastic phase transition, as
the J-ratios would be more or less the same.
We also carried out first-principles calculations to obtain the

spin densities in the non-collinear antiferromagnetic and ferro-
magnetic states of (NH4)2FeCl5⋅H2O. These results are summarized
in Fig. 3. In the zero-field (non-collinear antiferromagnetic) state,
the spin density resides primarily on the Fe3+ centers and to a
lesser extent on the chlorine and water ligands. The phase of the
spin density alternates characteristically42 and the empty space
between ligands is the node between the up- and down-spin
states. In the full-field (ferromagnetic) state, the spin-density
pattern of Fe3+ is similar to that of the ligands but with an overall
in-phase (rather than out-of-phase) arrangement. Another differ-
ence in the spin density can be found on the water ligand
extending toward the nearest chlorine through the H-O⋯Cl
hydrogen bonding pathway. As discussed previously, the H-O⋯Cl
pathway produces the primary exchange interaction J1. The
additional spin density across this intermolecular hydrogen bond
suggests that J1 increases in the fully saturated state. Hence, the
field-induced change in spin density is linked to modifications of
the magnetic exchange interactions. This spin density redistribu-
tion also contributes to the lack of inversion symmetry by
exacerbating the anti-alignment of polarization and
magnetization.

Revealing the phase diagram of (NH4)2FeCl5⋅H2O
We can use the pulsed-field magnetization data in Fig. 2 to
develop the B–T phase diagram. In order to precisely determine
the location of the various phase boundaries and track their

Fig. 3 Numerical simulation results for the spin ground state and spin density across the magnetic quantum phase transition. a The red
arrows represent the spin structures experimentally observed from the neutron diffraction.26,27 The blue arrows are the spin structure
obtained from the numerical simulations with exchange interaction parameters from DFT calculations. b, c Spin density in the non-collinear
state as viewed along a and c. d Calculated spin density in the ferromagnetic state as viewed along the c direction. The sign is given by the
color bar
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dependence on the external stimuli, we calculated (∂M/∂B)T and
plotted these curves vs. field (Fig. 2e, f). The position of the spin
flop and transition to the fully polarized state is clear. The use of
derivative techniques is particularly advantageous when following
trends in small features. For instance, careful analysis of the
derivative structure in the vicinity of the spin-flop transitions yields
three phase boundaries (Fig. 2e). Analysis in the vicinity of the
saturation field (indicated with an arrow) reveals a series of
transitions as well (Fig. 2f). (∂M/∂B)T also indicates the relative
importance of magnetism at each phase boundary. These
derivative techniques uncover two important regions: (i) the
low-field spin reorientations below 6 T and (ii) the high-field
region approaching (and including) the fully polarized state at
BSat ≈ 30 T. With increasing temperature, the position and relative
importance of the different peaks in the derivative response
evolves.
Figure 4 displays the B–T phase diagram of (NH4)2FeCl5⋅H2O for

B || c. We label the different regimes in accord with prior
magnetization, polarization, magnetostriction, and neutron scat-
tering.24–27,29 Here, AFM= antiferromagnetic, PM= paramagnetic,
ICC= incommensurate cycloidal, CS= cycloidal spiral, C1= dis-
torted cycloid, C2= quasi-collinear, CLS= collinear sinusodial,
FE= ferroelectric, and NE= non-electric. Of course, the transition
to the fully polarized state (BSat ≈ 30 T) along with two additional
reorientation transitions immediately preceding it are entirely new
—providing the first glimpse of the full complexity of the B–T
diagram in (NH4)2FeCl5⋅H2O. Similar phase diagrams for B || a and
for the deuterated crystals are available in the Supplementary
Information.
With increasing magnetic field, (NH4)2FeCl5H2O undergoes a

sequence of transitions where the quantum fluctuations present
in the antiferromagnetic ground state are suppressed as the
system is driven into the fully polarized state. The primary high-
field transition at 30 T is a quantum phase transition driven by
external stimuli rather than thermal fluctuations.8–10,22 The
magnitude of BSat is linked to the largest exchange interaction

(J1), with a pathway of Fe-O-H ⋯ Cl-Fe. Moreover, the spin density
redistributes to favor this pathway in the ferromagnetic state (Fig.
3d). The other exchange interactions are similar in magnitude but
smaller. Thus, although we cannot explicitly link J2–5 to specific
phase boundaries, it stands to reason that the more subtle
transitions at 26.9 and 28.6 T can be attributed to the lesser,
competing J’s. For instance, J2 and J4 are the next largest
superexchange interactions and may be correlated with the weak
28.6 T phase boundary, whereas J3 and J5 may be linked with the
26.9 T boundary. Obviously, all of the expected five spin re-
orientations should be resolved at the lowest temperatures.
In the lower field regime, (NH4)2FeCl5⋅H2O undergoes a series of

transitions in the vicinity of the 3.7 T spin-flop transition (Fig. 4b).
As before, this cascade of transitions is due to the many
competing exchange pathways in this compound. This grouping
can be linked to the five exchange pathways, although resolution
is lost due to similarities in magnitude and thermal broadening.
Triangular frustration created by J2 and J4 (Fig. 1a) is alleviated as
magnetic field increases. With increasing temperature, the low-
field phase boundaries converge toward a pair of triple points
between AFM 1, AFM 2, and AFM 3, as well as AFM 1, AFM 3, and
CLS/NE phases. Overall, the low-field portion of the magnetic
phase diagram is in excellent agreement with that of Ackermann
et al.24 The main exception is the splitting of the 3.7 T spin flop at
base temperature (Fig. 2e).
Although the properties and complex multiferroic phases of

(NH4)2FeCl5⋅H2O have been extensively studied in the low-field
regime,24–27,29 it is interesting to anticipate the high-field
response. In general, for type-II multiferroics, the spins need to
break spatial inversion symmetry in order to create an electric
polarization. Common spin structures that break spatial inversion
symmetry are various kinds of spirals.43–45 If the spins are fully
aligned with the magnetic field, then there is no spatial inversion
symmetry-breaking spin structure available to create electric
polarization. In other words, above the 30 T transition to the fully
saturated spin state, the polarization is likely to be quenched. The

Fig. 4 Developing the phase diagram. a B–T phase diagram of (NH4)2FeCl5⋅H2O for B || c obtained from an analysis of the magnetization at
various temperatures. The zero-field transitions are taken from ref. 24. b Close-up view of the low-field region of the diagram showing the
numerous phases labeled according to polarization, magnetostriction, and neutron scattering.24–27 Here, AFM= antiferromagnetic, PM=
paramagnetic, ICC= incommensurate cycloidal, CS= cycloidal spiral, C1= distorted cycloid, C2= quasi-collinear, CLS= collinear sinusodial,
FE= ferroelectric, and NE= non-electric. Data points from prior studies up to 15 T are indicated by open white circles.24
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high-field state is therefore unlikely to be magnetoelectric. Things
are different at 5 T. Here, the spin configuration is quasi-collinear
AFM 3 and the system is in the FEIII phase with polarization along
c.24,27 Whether the spin structure, polarization, and magneto-
electric coupling at 5 T24–27,29 are similar to those further away
from equilibrium—for instance, at 27 T—awaits further study. That
ferroelectricity depends so intimately upon the spin configuration
is the overarching motivation for revealing the magnetic phases of
(NH4)2FeCl5⋅H2O and unveiling the overall structure of the phase
diagram.
What differentiates the B–T phase diagram of (NH4)2FeCl5⋅H2O

from that of other molecule-based multiferroics is the exceptional
level of detail. For instance, in metal-organic framework com-
pounds such as (CH3)2NH2]Mn(HCOO)3, the phase diagram
exhibits a spin flop near 0.3 T, a broad canted phase, and a
transition to the fully saturated state at 15.3 T.22 Likewise, in
CaCo2As2, the critical fields are 3.7 and 7.5 T.46 The overall
simplicity of these B–T phase diagrams arises from the super-
exchange pathways through formate ligands or Co⋯As interac-
tions, respectively. Magnetic exchange, of course, can also take
place through hydrogen and halide bonds. This is the situation in
(NH4)2FeCl5⋅H2O and a number of other molecule-based materi-
als.47–51 What makes (NH4)2FeCl5⋅H2O so unusual is that there are
five isoenergetic intermolecular hydrogen and halide bonds that
function as superexchange pathways. In addition to the extra-
ordinary softness, this gives rise to an unusual degree of
frustration that is manifested as a series field-driven transitions
and an extremely complex B–T phase diagram. Traditionally, these
systems have been under-explored, but our work on
(NH4)2FeCl5⋅H2O is a major step toward changing this situation.
Other members of the erythrosiderite family such as K2FeCl5⋅H2O
do not seem to be as soft as the ammonium compound. The K+-
containing system is also a collinear antiferromagnet rather than a
multiferroic. This difference has been a puzzle for some time and
appears to be related to the character of the superexchange
network as discussed in the Supplementary Information. Unex-
pectedly, the spin structure of TbMnO3 is similar to that in
(NH4)2FeCl5⋅H2O,

24,29,32–34 providing yet another reason to more
deeply examine the properties in this unusual type-II molecule-
based multiferroic.
We combined pulsed-field magnetization measurements with

first-principles calculations and numerical simulations of exchange
interactions to reveal the magnetic properties of the type-II
multiferroic (NH4)2FeCl5⋅H2O. The B–T phase diagram is surpris-
ingly complex with a spin-flop transition between 3 and 5 T, and a
transition to the fully saturated state near 30 T—each of which is
preceded by a series of weak reorientation transitions that reflect
the many quasi-isoenergetic exchange interactions in this
material. The latter arise from an elaborate intermolecular
hydrogen and halogen bonding network, and in addition to a
full description of the non-collinear ground state, we evaluate
field-induced changes to the spin density pattern in terms of these
intermolecular exchange interactions across the entire field
regime. Structure–property relations in (NH4)2FeCl5⋅H2O are
discussed with an emphasis on how isotopic decoration impacts
the intermolecular hydrogen and halogen bond network and
saturation fields. In addition to distinguishing (NH4)2FeCl5⋅H2O
from other members of the erythrosiderite family, we compare the
phase diagram and character of the exchange interactions with
other well-known multiferroics such as [(CH3)2NH2]Mn(HCOO)3
where the metal centers are linked by formate ligands, TbMnO3,
which has a similar non-collinear spin structure, and MnWO4

where the different field-induced spin configurations flop the
polarization. The development of the phase diagram and our
uniquely detailed understanding of the magnetically-driven
transitions in (NH4)2FeCl5⋅H2O open the door to the exploration
of frustrated multiferroics and other quantum materials in which
hydrogen and halogen bonds support magnetic exchange.

METHODS
Crystal growth
Hydrogentated and deuterated (NH4)2FeCl5⋅H2O single crystals were
grown by solution method using HCl/DCl, FeCl3, and NH4Cl/ND4Cl,
respectively.24,29 A sealed saturated solution was kept in a sample
environment chamber at 38 °C and allowed to slowly evaporate. Large
crystals were obtained. The crystals were characterized by magnetic
susceptibility and specific heat measurements, and no significant
deuteration-induced effects were recorded between the hydrogenated
and deuterated samples. Samples were oriented using morphological faces
as references.24

Magnetization measurements
High-field magnetization measurements were performed using a 65 T
short-pulse magnet at the National High Magnetic Field Laboratory in Los
Alamos using a 1.5 mm bore, 1.5 mm long, 1500-turn compensated-coil
susceptometer, constructed from 50-gauge high-purity copper wire as
described in ref. 22. In addition to full field pulses, we carried out 10 and
35 T shots to resolve the spin flop and saturation. The critical fields (BSF,
BSat, and all satellite transitions) were determined using first derivative
techniques. The spin transitions were brought together to create the B–T
phase diagram.

First-principles density functional theory
First-principles calculations were performed using DFT within the local
density approximation LDA+ U method as implemented in the Vienna ab
initio simulation package (VASP 5.4.1).52–54 We use the Dudarev55

implementation with on-site Coulomb interaction U= 2.0 eV to treat the
localized 3d electron states in Fe. Our value for U is chosen to bring Q
closest to the experimental value. The projector augmented wave (PAW)
potentials56,57 explicitly include eight valence electrons for Fe (3d7 4s1), five
for N (2s3 2p3), one for H(1s1), seven for Cl (3s2 3p5), and six for O (2s2 2p4).
Before calculating the exchange interactions and spin density, the crystal
structure was taken from ref. 58 and the Crystallography open database
(COD ID: 9012597). The atomic structure was optimized for both lattice
parameters and atomic positions with collinear-antiferromagnetic spin
ordering. A plane-wave basis set with a cutoff energy of 500 eV was used.
The k-point sampling used the Monkhorst–Pack scheme59 and employed
2 × 3 × 4 and 2 × 3 × 2 meshes for the unit cell and the supercell of
(NH4)2FeCl5⋅H2O, respectively. The atomic positions were optimized until
the interatomic forces were smaller than 1meV/Å.
To calculate exchange interactions, we used an energy-mapping analysis

for localized spins without spin–orbit coupling.60,61 A 1 × 1 × 2 supercell
was chosen to evaluate the exchange interaction J4, which cannot be
included in a smaller unit cell. A detailed explanation for the computation
of Jij is provided in section 2 of the Supplementary Information. In order to
simulate the spin state with Q ≈ 0.23 along the c direction,26,27 a very large
supercell would be required. To make this problem more tractable, we
assumed that Q= 0.25 and used a 1 × 1 × 4 supercell to reproduce the
non-collinear spin ordering. On the other hand, the ferromagnetic spin
density was obtained from a collinear spin-polarized scf calculation. The k-
point sampling uses the Monkhorst–Pack scheme59 and employs a 2 × 3 ×
1 and a 2 × 3 × 4 mesh for non-collinear and collinear spin density
calculations, respectively.

Numerical simulations
To find the spin ground state at zero magnetic field from Eq. (1), the
exchange interactions were taken from the DFT calculations. In zero
magnetic field and with no anisotropy in the cycloidal plane, the spin
cycloid can be approximated by a single sinusoidal function.62,63 As single-
ion anisotropy along the b-axis preserves the harmonic spin cycloid in the
ac plane, no Sbi Rð Þ component was considered. We can safely assume that
the spins are classical vectors, as the Fe3+ ions have a large spin value 5/2.
Thus, the trial functions for Si(R) are

Sxi Rð Þ ¼ S sin 2πQz þ ϕið Þ
Szi Rð Þ ¼ S cos 2πQz þ ϕið Þ;
with Syi ðRÞ ¼ 0. The index i labels the four distinct spins in the magnetic
unit cell (see ref. 26 for spin number assignment in the magnetic unit cell)
and ϕi are the phases. For our model, ϕ1= ϕ2 and ϕ3= ϕ4.
To evaluate Q and ϕi, we minimized the energy E ¼ Hh i using periodic

boundary conditions along all directions while fixing ϕ1= 0. For the
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incommensurate spin state, we minimized the energy within a magnetic
unit cell with 2000 sites along c. After minimization, we checked that the
classical forces on each spin vanish and we tried multiple Q and ϕi values
as initial values in the optimization to avoid metastable states. The detailed
procedure to determine the field-dependent magnetization is described in
section 3 of the Supplementary Information.
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