33 research outputs found

    Purification and biochemical characterization of four iron superoxide dismutases in Trypanosoma cruzi

    Get PDF
    Four superoxide dismutase (SOD) activities (SOD I, II, III, and IV) have been characterized in the epimastigote form of Trypanosoma cruzi . The total extract was subjected to two successive ammonium sulphate additions between 35 and 85%, and the resulting fraction was purified using two continuous chromatography processes (ion exchange and filtration). Enzymes were insensitive to cyanide but sensitive to hydrogen peroxide, properties characteristic of iron-containing SODs. The molecular masses of the different SODs were 20 kDa (SOD I), 60 kDa (SOD II), 50 kDa (SOD III) and 25 kDa (SOD IV), whereas the isoelectric points were 6.9, 6.8, 5.2 and 3.8, respectively. Subcellular location and digitonin experiments have shown that these SODs are mainly cytosolic, with small amounts in the low- mass organelles (SOD II and SOD I) and the mitochondrion (SOD III), where these enzymes play an important role in minimizing oxidative damage.Financial support: CGL2006-27889-E/BOS, Ministerio de Ciencia y Tecnología

    The Role of CyaY in Iron Sulfur Cluster Assembly on the E. coli IscU Scaffold Protein

    Get PDF
    Progress in understanding the mechanism underlying the enzymatic formation of iron-sulfur clusters is difficult since it involves a complex reaction and a multi-component system. By exploiting different spectroscopies, we characterize the effect on the enzymatic kinetics of cluster formation of CyaY, the bacterial ortholog of frataxin, on cluster formation on the scaffold protein IscU. Frataxin/CyaY is a highly conserved protein implicated in an incurable ataxia in humans. Previous studies had suggested a role of CyaY as an inhibitor of iron sulfur cluster formation. Similar studies on the eukaryotic proteins have however suggested for frataxin a role as an activator. Our studies independently confirm that CyaY slows down the reaction and shed new light onto the mechanism by which CyaY works. We observe that the presence of CyaY does not alter the relative ratio between [2Fe2S]2+ and [4Fe4S]2+ but directly affects enzymatic activity

    Structural bases for the interaction of frataxin with the central components of iron–sulphur cluster assembly

    Get PDF
    Reduced levels of frataxin, an essential protein of as yet unknown function, are responsible for causing the neurodegenerative pathology Friedreich's ataxia. Independent reports have linked frataxin to iron–sulphur cluster assembly through interactions with the two central components of this machinery: desulphurase Nfs1/IscS and the scaffold protein Isu/IscU. In this study, we use a combination of biophysical methods to define the structural bases of the interaction of CyaY (the bacterial orthologue of frataxin) with the IscS/IscU complex. We show that CyaY binds IscS as a monomer in a pocket between the active site and the IscS dimer interface. Recognition does not require iron and occurs through electrostatic interactions of complementary charged residues. Mutations at the complex interface affect the rates of enzymatic cluster formation. CyaY binding strengthens the affinity of the IscS/IscU complex. Our data suggest a new paradigm for understanding the role of frataxin as a regulator of IscS functions

    In silico pathway reconstruction: Iron-sulfur cluster biogenesis in Saccharomyces cerevisiae

    Get PDF
    BACKGROUND: Current advances in genomics, proteomics and other areas of molecular biology make the identification and reconstruction of novel pathways an emerging area of great interest. One such class of pathways is involved in the biogenesis of Iron-Sulfur Clusters (ISC). RESULTS: Our goal is the development of a new approach based on the use and combination of mathematical, theoretical and computational methods to identify the topology of a target network. In this approach, mathematical models play a central role for the evaluation of the alternative network structures that arise from literature data-mining, phylogenetic profiling, structural methods, and human curation. As a test case, we reconstruct the topology of the reaction and regulatory network for the mitochondrial ISC biogenesis pathway in S. cerevisiae. Predictions regarding how proteins act in ISC biogenesis are validated by comparison with published experimental results. For example, the predicted role of Arh1 and Yah1 and some of the interactions we predict for Grx5 both matches experimental evidence. A putative role for frataxin in directly regulating mitochondrial iron import is discarded from our analysis, which agrees with also published experimental results. Additionally, we propose a number of experiments for testing other predictions and further improve the identification of the network structure. CONCLUSION: We propose and apply an iterative in silico procedure for predictive reconstruction of the network topology of metabolic pathways. The procedure combines structural bioinformatics tools and mathematical modeling techniques that allow the reconstruction of biochemical networks. Using the Iron Sulfur cluster biogenesis in S. cerevisiae as a test case we indicate how this procedure can be used to analyze and validate the network model against experimental results. Critical evaluation of the obtained results through this procedure allows devising new wet lab experiments to confirm its predictions or provide alternative explanations for further improving the models

    Pooled analysis of WHO Surgical Safety Checklist use and mortality after emergency laparotomy

    Get PDF
    Background The World Health Organization (WHO) Surgical Safety Checklist has fostered safe practice for 10 years, yet its place in emergency surgery has not been assessed on a global scale. The aim of this study was to evaluate reported checklist use in emergency settings and examine the relationship with perioperative mortality in patients who had emergency laparotomy. Methods In two multinational cohort studies, adults undergoing emergency laparotomy were compared with those having elective gastrointestinal surgery. Relationships between reported checklist use and mortality were determined using multivariable logistic regression and bootstrapped simulation. Results Of 12 296 patients included from 76 countries, 4843 underwent emergency laparotomy. After adjusting for patient and disease factors, checklist use before emergency laparotomy was more common in countries with a high Human Development Index (HDI) (2455 of 2741, 89.6 per cent) compared with that in countries with a middle (753 of 1242, 60.6 per cent; odds ratio (OR) 0.17, 95 per cent c.i. 0.14 to 0.21, P <0001) or low (363 of 860, 422 per cent; OR 008, 007 to 010, P <0.001) HDI. Checklist use was less common in elective surgery than for emergency laparotomy in high-HDI countries (risk difference -94 (95 per cent c.i. -11.9 to -6.9) per cent; P <0001), but the relationship was reversed in low-HDI countries (+121 (+7.0 to +173) per cent; P <0001). In multivariable models, checklist use was associated with a lower 30-day perioperative mortality (OR 0.60, 0.50 to 073; P <0.001). The greatest absolute benefit was seen for emergency surgery in low- and middle-HDI countries. Conclusion Checklist use in emergency laparotomy was associated with a significantly lower perioperative mortality rate. Checklist use in low-HDI countries was half that in high-HDI countries.Peer reviewe

    PNA-Encoded Synthesis (PES) and DNA Display of Small Molecule Libraries

    No full text
    DNA-encoded library technologies have emerged as a powerful platform to rapidly screen for binders to a protein of interest. These technologies are underpinned by the ability to encode a rich diversity of small molecules. While large libraries are accessible by cycles of mix and split synthesis, libraries based on single chemistries tend to be redundant. Furthermore, the quality of libraries generally decreases with the number of synthetic transformations performed in its synthesis. An alternative approach is to use hybridization to program the combinatorial assembly of fragment pairs onto a library of DNA templates. A broad molecular diversity is more easily sampled since it arises from the pairing of diverse fragments. Upon identification of productive fragment pairs, a focused library covalently linking the fragments is prepared. This focused library includes linker of different length and geometry and offers the opportunity to enrich the selected fragment set with close neighbors. Herein we describe detailed protocols to covalently link diverse fragments and screen fragment-based libraries using commercially available microarray platform

    Bacterial frataxin CyaY is the gatekeeper of iron-sulfur cluster formation catalyzed by IscS

    No full text
    Frataxin is an essential mitochondrial protein whose reduced expression causes Friedreich's ataxia (FRDA), a lethal neurodegenerative disease. It is believed that frataxin is an iron chaperone that participates in iron metabolism. We have tested this hypothesis using the bacterial frataxin ortholog, CyaY, and different biochemical and biophysical techniques. We observe that CyaY participates in iron-sulfur (Fe-S) cluster assembly as an iron-dependent inhibitor of cluster formation, through binding to the desulfurase IscS. The interaction with IscS involves the iron binding surface of CyaY, which is conserved throughout the frataxin family. We propose that frataxins are iron sensors that act as regulators of Fe-S cluster formation to fine-tune the quantity of Fe-S cluster formed to the concentration of the available acceptors. Our observations provide new perspectives for understanding FRDA and a mechanistic model that rationalizes the available knowledge on frataxin. © 2009 Nature America, Inc. All rights reserved
    corecore