251 research outputs found
Neutron Majorana mass from exotic instantons
We show how a Majorana mass for the Neutron could result from
non-perturbative quantum gravity effects peculiar to string theory. In
particular, "exotic instantons" in un-oriented string compactifications with
D-branes extending the (supersymmetric) standard model could indirectly produce
an effective operator delta{m} n^t n+h.c. In a specific model with an extra
vector-like pair of `quarks', acquiring a large mass proportional to the string
mass scale (exponentially suppressed by a function of the string moduli
fields), delta{m} can turn out to be as low as 10^{-24}-10^{-25} eV. The
induced neutron-antineutron oscillations could take place with a time scale
tau_{n\bar{n}} > 10^8 s, that could be tested by the next generation of
experiments. On the other hand, proton decay and FCNC's are automatically
strongly suppressed and are compatible with the current experimental limits.
Depending on the number of brane intersections, the model may also lead to the
generation of Majorana masses for R-handed neutrini. Our proposal could also
suggest neutron-neutralino or neutron-axino oscillations, with implications in
UCN, Dark Matter Direct Detection, UHECR and Neutron-Antineutron oscillations.
This suggests to improve the limits on neutron-antineutron oscillations, as a
possible test of string theory and quantum gravity.Comment: 35 pages, 11 figures. More comments on neutron-neutralino mixin
The role of chemotherapeutic drugs in the evaluation of breast tumour response to chemotherapy using serial FDG-PET
INTRODUCTION: The aims of this study were to investigate whether drug sequence (docetaxel followed by anthracyclines or the drugs in reverse order) affects changes in the maximal standard uptake volume (SUVmax) on [18F]fluorodeoxyglucose positron emission tomography (FDG-PET) during neoadjuvant chemotherapy in women with locally advanced breast cancer. METHODS: Women were randomly assigned to receive either drug sequence, and FDG-PET scans were taken at baseline, after four cycles and after eight cycles of chemotherapy. Tumour response to chemotherapy was evaluated based on histology from a surgical specimen collected upon completion of chemotherapy. RESULTS: Sixty women were enrolled into the study. Thirty-one received docetaxel followed by anthracyclines (Arm A) and 29 received drugs in the reverse order (Arm B). Most women (83%) had ductal carcinoma and 10 women (17%) had lobular or lobular/ductal carcinoma. All but one tumour were downstaged during therapy. Overall, there was no significant difference in response between the two drug regimens. However, women in Arm B who achieved complete pathological response had mean FDG-PET SUVmax reduction of 87.7% after four cycles, in contrast to those who had no or minor pathological response. These women recorded mean SUVmax reductions of only 27% (P < 0.01). Women in Arm A showed no significant difference in SUVmax response according to pathological response. Sensitivity, specificity, accuracy and positive and negative predictive values were highest in women in Arm B. CONCLUSIONS: Our results show that SUVmax uptake by breast tumours during chemotherapy can be dependent on the drugs used. Care must be taken when interpreting FDG-PET in settings where patients receive varied drug protocols
Inhibitors of MyD88-Dependent Proinflammatory Cytokine Production Identified Utilizing a Novel RNA Interference Screening Approach
The events required to initiate host defenses against invading pathogens involve complex signaling cascades comprised of numerous adaptor molecules, kinases, and transcriptional elements, ultimately leading to the production of proinflammatory cytokines, such as tumor necrosis factor alpha (TNF-alpha). How these signaling cascades are regulated, and the proteins and regulatory elements participating are still poorly understood.We report here the development a completely random short-hairpin RNA (shRNA) library coupled with a novel forward genetic screening strategy to identify inhibitors of Toll-like receptor (TLR) dependent proinflammatory responses. We developed a murine macrophage reporter cell line stably transfected with a construct expressing diphtheria toxin-A (DT-A) under the control of the TNF-alpha-promoter. Stimulation of the reporter cell line with the TLR ligand lipopolysaccharide (LPS) resulted in DT-A induced cell death, which could be prevented by the addition of an shRNA targeting the TLR adaptor molecule MyD88. Utilizing this cell line, we screened a completely random lentiviral short hairpin RNA (shRNA) library for sequences that inhibited TLR-mediated TNF-alpha production. Recovery of shRNA sequences from surviving cells led to the identification of unique shRNA sequences that significantly inhibited TLR4-dependent TNF-alpha gene expression. Furthermore, these shRNA sequences specifically blocked TLR2 but not TLR3-dependent TNF-alpha production.Thus, we describe the generation of novel tools to facilitate large-scale forward genetic screens in mammalian cells and the identification of potent shRNA inhibitors of TLR2 and TLR4- dependent proinflammatory responses
Performance of the CMS Cathode Strip Chambers with Cosmic Rays
The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device
in the CMS endcaps. Their performance has been evaluated using data taken
during a cosmic ray run in fall 2008. Measured noise levels are low, with the
number of noisy channels well below 1%. Coordinate resolution was measured for
all types of chambers, and fall in the range 47 microns to 243 microns. The
efficiencies for local charged track triggers, for hit and for segments
reconstruction were measured, and are above 99%. The timing resolution per
layer is approximately 5 ns
Enhanced Notch Activation Is Advantageous but Not Essential for T Cell Lymphomagenesis in Id1 Transgenic Mice
T cell lymphoblastic leukemia (T-ALL) is known to be associated with chromosomal abnormalities that lead to aberrant expression of a number of transcription factors such as TAL1, which dimerizes with basic helix-loop-helix (bHLH) E proteins and inhibits their function. Activated Notch receptors also efficiently induce T cell leukemogenesis in mouse models. Interestingly, gain-of-function mutations or cryptic transcription initiation of the Notch1 gene have been frequently found in both human and mouse T-ALL. However, the correlations between these alterations and overall Notch activities or leukemogenesis have not been thoroughly evaluated. Therefore, we made use of our collection of T cell lymphomas developed in transgenic mice expressing Id1, which like TAL1, inhibits E protein function. By comparing expression levels of Notch target genes in Id1-expressing tumors to those in tumors induced by a constitutively active form of Notch1, N1C, we were able to assess the overall activities of Notch pathways and conclude that the majority of Id1-expressing tumors had elevated Notch function to a varying degree. However, 26% of the Id1-expressing tumors had no evidence of enhanced Notch activation, but that did not delay the onset of tumorigenesis. Furthermore, we examined the genetic or epigenetic alterations thought to contribute to ligand-independent activation or protein stabilization of Notch1 and found that some of the Id1-expressing tumors acquired these changes, but they are not uniformly associated with elevated Notch activities in Id1 tumor samples. In contrast, N1C-expressing tumors do not harbor any PEST domain mutations nor exhibit intragenic transcription initiation. Taken together, it appears that Notch activation provides Id1-expressing tumor cells with selective advantages in growth and survival. However, this may not be absolutely essential for lymphomagenesis in Id1 transgenic mice and additional factors could also cooperate with Id1 to induce T cell lymphoma. Therefore, a broad approach is necessary in designing T-ALL therapy
Interactive voice response technology for symptom monitoring and as an adjunct to the treatment of chronic pain
Chronic pain is a medical condition that severely decreases the quality of life for those who struggle to cope with it. Interactive voice response (IVR) technology has the ability to track symptoms and disease progression, to investigate the relationships between symptom patterns and clinical outcomes, to assess the efficacy of ongoing treatments, and to directly serve as an adjunct to therapeutic treatment for chronic pain. While many approaches exist toward the management of chronic pain, all have their pitfalls and none work universally. Cognitive behavioral therapy (CBT) is one approach that has been shown to be fairly effective, and therapeutic interactive voice response technology provides a convenient and easy-to-use means of extending the therapeutic gains of CBT long after patients have discontinued clinical visitations. This review summarizes the advantages and disadvantages of IVR technology, provides evidence for the efficacy of the method in monitoring and managing chronic pain, and addresses potential future directions that the technology may take as a therapeutic intervention in its own right
Aberrant signaling in T-cell acute lymphoblastic leukemia: biological and therapeutic implications
T-cell acute lymphoblastic leukemia (T-ALL) is a biologically heterogeneous disease with respect to phenotype, gene expression profile and activation of particular intracellular signaling pathways. Despite very significant improvements, current therapeutic regimens still fail to cure a portion of the patients and frequently implicate the use of aggressive protocols with long-term side effects. In this review, we focused on how deregulation of critical signaling pathways, in particular Notch, PI3K/Akt, MAPK, Jak/STAT and TGF-beta, may contribute to T-ALL. Identifying the alterations that affect intracellular pathways that regulate cell cycle and apoptosis is essential to understanding the biology of this malignancy, to define more effective markers for the correct stratification of patients into appropriate therapeutic regimens and to identify novel targets for the development of specific, less detrimental therapies for T-ALL
High school drinking mediates the relationship between parental monitoring and college drinking: A longitudinal analysis
<p>Abstract</p> <p>Background</p> <p>College drinking is a significant public health problem. Although parental monitoring and supervision reduces the risk for alcohol consumption among younger adolescents, few studies have investigated the impact of earlier parental monitoring on later college drinking. This study examined whether parental monitoring indirectly exerts a protective effect on college drinking by reducing high school alcohol consumption.</p> <p>Methods</p> <p>A longitudinal cohort of 1,253 male and female students, ages 17 to 19, attending a large, public, mid-Atlantic university was studied at two time points. First, data on high school parental monitoring and alcohol consumption were gathered via questionnaire during the summer prior to college entry. Second, during the first year of college, past-year alcohol consumption was measured via a personal interview. Multiple regression models tested the relationship between parental monitoring and past year alcohol use (i.e., number of drinks per drinking day).</p> <p>Results</p> <p>Holding constant demographics, SAT score, and religiosity, parental monitoring had a significant protective effect on both high school and college drinking level. However, the association between parental monitoring and college drinking level became non-significant once high school drinking level was held constant.</p> <p>Conclusion</p> <p>While parental monitoring did not directly influence college alcohol consumption, evidence for mediation was observed, whereby parental monitoring had an indirect influence on college drinking through reductions in high school drinking. Initiatives that promote effective parenting might be an important strategy to curb high-risk drinking among older adolescents. More research is needed to understand the nature and degree of parent-child communication that is necessary to extend the protective influence of parents into the college years.</p
- …