82 research outputs found
Potential and Actual Terrestrial Rabies Exposures in People and Domestic Animals, Upstate South Carolina, 1994–2004: A Surveillance Study
<p>Abstract</p> <p>Background</p> <p>Although there has been a reduction of rabies in pets and domestic animals during recent decades in the United States, rabies remains enzootic among bats and several species of terrestrial wildlife. Spillover transmission of wildlife rabies to domestic animals therefore remains a public health threat</p> <p>Methods</p> <p>Retrospective analysis of surveillance data of reported animal incidents (bites, scratches, mucous membrane contacts) from South Carolina, 1995 to 2003, was performed to assess risk factors of potential rabies exposures among human and animal victims.</p> <p>Results</p> <p>Dogs and cats contributed the majority (66.7% and 26.4%, respectively) of all reported incidents, with stray dogs and cats contributing 9.0% and 15.1 respectively. Current rabies vaccination status of dogs and cats (40.2% and 13.8%, respectively) were below World Health Organization recommended levels. Owned cats were half as likely to be vaccinated for rabies as dogs (OR 0.53, 95% CI 0.48, 0.58). Animal victims were primarily exposed to wildlife (83.0%), of which 27.5% were rabid. Almost 90% of confirmed rabies exposures were due to wildlife. Skunks had the highest prevalence of rabies among species of exposure animals (63.2%). Among rabid domestic animals, stray cats were the most commonly reported (47.4%).</p> <p>Conclusion</p> <p>While the majority of reported potential rabies exposures are associated with dog and cat incidents, most rabies exposures derive from rabid wildlife. Stray cats were most frequently rabid among domestic animals. Our results underscore the need for improvement of wildlife rabies control and the reduction of interactions of domestic animals, including cats, with wildlife.</p
Potential cost savings with terrestrial rabies control
BACKGROUND: The cost-benefit of raccoon rabies control strategies such as oral rabies vaccination (ORV) are under evaluation. As an initial quantification of the potential cost savings for a control program, the collection of selected rabies cost data was pilot tested for five counties in New York State (NYS) in a three-year period. METHODS: Rabies costs reported to NYS from the study counties were computerized and linked to a human rabies exposure database. Consolidated costs by county and year were averaged and compared. RESULTS: Reported rabies-associated costs for all rabies variants totalled 784,529). Average costs associated with the raccoon variant varied across counties from 1,885 per PEP, 44 per specimen, and 15 per pet vaccinated. CONCLUSION: Rabies costs vary widely by county in New York State, and were associated with human population size and methods used by counties to estimate costs. Rabies cost variability must be considered in developing estimates of possible ORV-related cost savings. Costs of PEPs and specimen preparation/shipments, as well as the costs of pet vaccination provided by this study may be valuable for development of more realistic scenarios in economic modelling of ORV costs versus benefits
Coronary-Heart-Disease-Associated Genetic Variant at the COL4A1/COL4A2 Locus Affects COL4A1/COL4A2 Expression, Vascular Cell Survival, Atherosclerotic Plaque Stability and Risk of Myocardial Infarction.
Genome-wide association studies have revealed an association between coronary heart disease (CHD) and genetic variation on chromosome 13q34, with the lead single nucleotide polymorphism rs4773144 residing in the COL4A2 gene in this genomic region. We investigated the functional effects of this genetic variant. Analyses of primary cultures of vascular smooth muscle cells (SMCs) and endothelial cells (ECs) from different individuals showed a difference between rs4773144 genotypes in COL4A2 and COL4A1 expression levels, being lowest in the G/G genotype, intermediate in A/G and highest in A/A. Chromatin immunoprecipitation followed by allelic imbalance assays of primary cultures of SMCs and ECs that were of the A/G genotype revealed that the G allele had lower transcriptional activity than the A allele. Electrophoretic mobility shift assays and luciferase reporter gene assays showed that a short DNA sequence encompassing the rs4773144 site interacted with a nuclear protein, with lower efficiency for the G allele, and that the G allele sequence had lower activity in driving reporter gene expression. Analyses of cultured SMCs from different individuals demonstrated that cells of the G/G genotype had higher apoptosis rates. Immunohistochemical and histological examinations of ex vivo atherosclerotic coronary arteries from different individuals disclosed that atherosclerotic plaques with the G/G genotype had lower collagen IV abundance and thinner fibrous cap, a hallmark of unstable, rupture-prone plaques. A study of a cohort of patients with angiographically documented coronary artery disease showed that patients of the G/G genotype had higher rates of myocardial infarction, a phenotype often caused by plaque rupture. These results indicate that the CHD-related genetic variant at the COL4A2 locus affects COL4A2/COL4A1 expression, SMC survival, and atherosclerotic plaque stability, providing a mechanistic explanation for the association between the genetic variant and CHD risk
Strong Host-Feeding Preferences of the Vector Triatoma infestans Modified by Vector Density: Implications for the Epidemiology of Chagas Disease
Chagas disease is a complex zoonosis with more than 150 mammalian host species, nearly a dozen blood-sucking triatomine species as main vectors, and 9–11 million people infected with Trypanosoma cruzi (its causal agent) in the Americas. Triatoma infestans, a highly domesticated species and one of the main vectors, feeds more often on domestic animals than on humans in northern Argentina. The question of whether there are host-feeding preferences among dogs, cats, and chickens is crucial to estimating transmission risks and predicting the effects of control tactics targeting them. This article reports the first host choice experiments of triatomine bugs conducted in small huts under natural conditions. The results demonstrate that T. infestans consistently preferred dogs to chickens or cats, with host shifts occurring more frequently at higher vector densities. Combined with earlier findings showing that dogs have high infection rates, are highly infectious, and have high contact rates with humans and domestic bugs, our results reinforce the role of dogs as the key reservoirs of T. cruzi. The strong bug preference for dogs can be exploited to target dogs with topical lotions or insecticide-impregnated collars to turn them into baited lethal traps or use them as transmission or infestation sentinels
Alternative splicing variant of the hypoxia marker carbonic anhydrase IX expressed independently of hypoxia and tumour phenotype
CA IX is a hypoxia-induced, cancer-associated carbonic anhydrase isoform with functional involvement in pH control and cell adhesion. Here we describe an alternative splicing variant of the CA9 mRNA, which does not contain exons 8–9 and is expressed in tumour cells independently of hypoxia. It is also detectable in normal tissues in the absence of the full-length transcript and can therefore produce false-positive data in prognostic studies based on the detection of the hypoxia- and cancer-related CA9 expression. The splicing variant encodes a truncated CA IX protein lacking the C-terminal part of the catalytic domain. It shows diminished catalytic activity and is intracellular or secreted. When overexpressed, it reduces the capacity of the full-length CA IX protein to acidify extracellular pH of hypoxic cells and to bind carbonic anhydrase inhibitor. HeLa cells transfected with the splicing variant cDNA generate spheroids that do not form compact cores, suggesting that they fail to adapt to hypoxic stress. Our data indicate that the splicing variant can functionally interfere with the full-length CA IX. This might be relevant particularly under conditions of mild hypoxia, when the cells do not suffer from severe acidosis and do not need excessive pH control
Positive Evolutionary Selection of an HD Motif on Alzheimer Precursor Protein Orthologues Suggests a Functional Role
HD amino acid duplex has been found in the active center of many different enzymes. The dyad plays remarkably different roles in their catalytic processes that usually involve metal coordination. An HD motif is positioned directly on the amyloid beta fragment (Aβ) and on the carboxy-terminal region of the extracellular domain (CAED) of the human amyloid precursor protein (APP) and a taxonomically well defined group of APP orthologues (APPOs). In human Aβ HD is part of a presumed, RGD-like integrin-binding motif RHD; however, neither RHD nor RXD demonstrates reasonable conservation in APPOs. The sequences of CAEDs and the position of the HD are not particularly conserved either, yet we show with a novel statistical method using evolutionary modeling that the presence of HD on CAEDs cannot be the result of neutral evolutionary forces (p<0.0001). The motif is positively selected along the evolutionary process in the majority of APPOs, despite the fact that HD motif is underrepresented in the proteomes of all species of the animal kingdom. Position migration can be explained by high probability occurrence of multiple copies of HD on intermediate sequences, from which only one is kept by selective evolutionary forces, in a similar way as in the case of the “transcription binding site turnover.” CAED of all APP orthologues and homologues are predicted to bind metal ions including Amyloid-like protein 1 (APLP1) and Amyloid-like protein 2 (APLP2). Our results suggest that HDs on the CAEDs are most probably key components of metal-binding domains, which facilitate and/or regulate inter- or intra-molecular interactions in a metal ion-dependent or metal ion concentration-dependent manner. The involvement of naturally occurring mutations of HD (Tottori (D7N) and English (H6R) mutations) in early onset Alzheimer's disease gives additional support to our finding that HD has an evolutionary preserved function on APPOs
Matrix Metalloproteinase-Induced Epithelial-Mesenchymal Transition in Breast Cancer
Matrix metalloproteinases (MMPs) degrade and modify the extracellular matrix (ECM) as well as cell-ECM and cell-cell contacts, facilitating detachment of epithelial cells from the surrounding tissue. MMPs play key functions in embryonic development and mammary gland branching morphogenesis, but they are also upregulated in breast cancer, where they stimulate tumorigenesis, cancer cell invasion and metastasis. MMPs have been investigated as potential targets for cancer therapy, but clinical trials using broad-spectrum MMP inhibitors yielded disappointing results, due in part to lack of specificity toward individual MMPs and specific stages of tumor development. Epithelial-mesenchymal transition (EMT) is a developmental process in which epithelial cells take on the characteristics of invasive mesenchymal cells, and activation of EMT has been implicated in tumor progression. Recent findings have implicated MMPs as promoters and mediators of developmental and pathogenic EMT processes in the breast. In this review, we will summarize recent studies showing how MMPs activate EMT in mammary gland development and in breast cancer, and how MMPs mediate breast cancer cell motility, invasion, and EMT-driven breast cancer progression. We also suggest approaches to inhibit these MMP-mediated malignant processes for therapeutic benefit
Molecular biology of the blood-brain and the blood-cerebrospinal fluid barriers: similarities and differences
Efficient processing of information by the central nervous system (CNS) represents an important evolutionary advantage. Thus, homeostatic mechanisms have developed that provide appropriate circumstances for neuronal signaling, including a highly controlled and stable microenvironment. To provide such a milieu for neurons, extracellular fluids of the CNS are separated from the changeable environment of blood at three major interfaces: at the brain capillaries by the blood-brain barrier (BBB), which is localized at the level of the endothelial cells and separates brain interstitial fluid (ISF) from blood; at the epithelial layer of four choroid plexuses, the blood-cerebrospinal fluid (CSF) barrier (BCSFB), which separates CSF from the CP ISF, and at the arachnoid barrier. The two barriers that represent the largest interface between blood and brain extracellular fluids, the BBB and the BCSFB, prevent the free paracellular diffusion of polar molecules by complex morphological features, including tight junctions (TJs) that interconnect the endothelial and epithelial cells, respectively. The first part of this review focuses on the molecular biology of TJs and adherens junctions in the brain capillary endothelial cells and in the CP epithelial cells. However, normal function of the CNS depends on a constant supply of essential molecules, like glucose and amino acids from the blood, exchange of electrolytes between brain extracellular fluids and blood, as well as on efficient removal of metabolic waste products and excess neurotransmitters from the brain ISF. Therefore, a number of specific transport proteins are expressed in brain capillary endothelial cells and CP epithelial cells that provide transport of nutrients and ions into the CNS and removal of waste products and ions from the CSF. The second part of this review concentrates on the molecular biology of various solute carrier (SLC) transport proteins at those two barriers and underlines differences in their expression between the two barriers. Also, many blood-borne molecules and xenobiotics can diffuse into brain ISF and then into neuronal membranes due to their physicochemical properties. Entry of these compounds could be detrimental for neural transmission and signalling. Thus, BBB and BCSFB express transport proteins that actively restrict entry of lipophilic and amphipathic substances from blood and/or remove those molecules from the brain extracellular fluids. The third part of this review concentrates on the molecular biology of ATP-binding cassette (ABC)-transporters and those SLC transporters that are involved in efflux transport of xenobiotics, their expression at the BBB and BCSFB and differences in expression in the two major blood-brain interfaces. In addition, transport and diffusion of ions by the BBB and CP epithelium are involved in the formation of fluid, the ISF and CSF, respectively, so the last part of this review discusses molecular biology of ion transporters/exchangers and ion channels in the brain endothelial and CP epithelial cells
Myocardial tagging by Cardiovascular Magnetic Resonance: evolution of techniques--pulse sequences, analysis algorithms, and applications
Cardiovascular magnetic resonance (CMR) tagging has been established as an essential technique for measuring regional myocardial function. It allows quantification of local intramyocardial motion measures, e.g. strain and strain rate. The invention of CMR tagging came in the late eighties, where the technique allowed for the first time for visualizing transmural myocardial movement without having to implant physical markers. This new idea opened the door for a series of developments and improvements that continue up to the present time. Different tagging techniques are currently available that are more extensive, improved, and sophisticated than they were twenty years ago. Each of these techniques has different versions for improved resolution, signal-to-noise ratio (SNR), scan time, anatomical coverage, three-dimensional capability, and image quality. The tagging techniques covered in this article can be broadly divided into two main categories: 1) Basic techniques, which include magnetization saturation, spatial modulation of magnetization (SPAMM), delay alternating with nutations for tailored excitation (DANTE), and complementary SPAMM (CSPAMM); and 2) Advanced techniques, which include harmonic phase (HARP), displacement encoding with stimulated echoes (DENSE), and strain encoding (SENC). Although most of these techniques were developed by separate groups and evolved from different backgrounds, they are in fact closely related to each other, and they can be interpreted from more than one perspective. Some of these techniques even followed parallel paths of developments, as illustrated in the article. As each technique has its own advantages, some efforts have been made to combine different techniques together for improved image quality or composite information acquisition. In this review, different developments in pulse sequences and related image processing techniques are described along with the necessities that led to their invention, which makes this article easy to read and the covered techniques easy to follow. Major studies that applied CMR tagging for studying myocardial mechanics are also summarized. Finally, the current article includes a plethora of ideas and techniques with over 300 references that motivate the reader to think about the future of CMR tagging
Pooled analysis of who surgical safety checklist use and mortality after emergency laparotomy
Background: The World Health Organization (WHO) Surgical Safety Checklist has fostered safe practice for 10 years, yet its place in emergency surgery has not been assessed on a global scale. The aim of this study was to evaluate reported checklist use in emergency settings and examine the relationship with perioperative mortality in patients who had emergency laparotomy. Methods: In two multinational cohort studies, adults undergoing emergency laparotomy were compared with those having elective gastrointestinal surgery. Relationships between reported checklist use and mortality were determined using multivariable logistic regression and bootstrapped simulation. Results: Of 12 296 patients included from 76 countries, 4843 underwent emergency laparotomy. After adjusting for patient and disease factors, checklist use before emergency laparotomy was more common in countries with a high Human Development Index (HDI) (2455 of 2741, 89⋅6 per cent) compared with that in countries with a middle (753 of 1242, 60⋅6 per cent; odds ratio (OR) 0⋅17, 95 per cent c.i. 0⋅14 to 0⋅21, P < 0⋅001) or low (363 of 860, 42⋅2 percent; OR 0⋅08, 0⋅07 to 0⋅10, P < 0⋅001) HDI. Checklist use was less common in elective surgery than for emergency laparotomy in high-HDI countries (risk difference −9⋅4 (95 per cent c.i. −11⋅9 to −6⋅9) per cent; P < 0⋅001), but the relationship was reversed in low-HDI countries (+12⋅1 (+7⋅0 to +17⋅3) per cent; P < 0⋅001). In multivariable models, checklist use was associated with a lower 30-day perioperative mortality (OR 0⋅60, 0⋅50 to 0⋅73; P < 0⋅001). The greatest absolute benefit was seen for emergency surgery in low-and middle-HDI countries. Conclusion: Checklist use in emergency laparotomy was associated with a significantly lower perioperative mortality rate. Checklist use in low-HDI countries was half that in high-HDI countries
- …
