259 research outputs found

    Computational Lattice-Gas Modeling of the Electrosorption of Small Molecules and Ions

    Full text link
    We present two recent applications of lattice-gas modeling techniques to electrochemical adsorption on catalytically active metal substrates: urea on Pt(100) and (bi)sulfate on Rh(111). Both involve the specific adsorption of small molecules or ions on well-characterized single-crystal electrodes, and they provide a particularly good fit between the adsorbate geometry and the substrate structure. The close geometric fit facilitates the formation of ordered submonolayer adsorbate phases in a range of electrode potential positive of the range in which an adsorbed monolayer of hydrogen is stable. In both systems the ordered-phase region is separated from the adsorbed- hydrogen region by a phase transition, signified in cyclic voltammograms by a sharp current peak. Based on data from {\it in situ\/} radiochemical surface concentration measurements, cyclic voltammetry, and scanning tunneling micro- scopy, and {\it ex situ\/} Auger electron spectroscopy and low-energy electron diffraction, we have developed specific lattice-gas models for the two systems. These models were studied by group-theoretical ground-state calcu- lations and numerical Monte Carlo simulations, and effective lattice-gas inter- action parameters were determined so as to provide agreement with experiments.Comment: 17 pp. uuencoded postscript, FSU-SCRI-94C-9

    A novel mixed-methods platform study protocol for investigating new surgical devices, with embedded shared learning: Ibra-net breast lesion localisation study

    Get PDF
    Introduction: New medical devices must have adequate research, such that outcomes are known, enabling patients to be consented with knowledge of the safety and efficacy of the device to be implanted. Device trials are challenging due to the learning curve and iterative assessment of best practice. This study is designed to pilot a national collaborative approach to medical device introduction by breast surgeons in the UK, using breast localisation devices as an exemplar. The aim is to develop an effective and transferable surgical device platform protocol design, with embedded shared learning. Methods and analysis: The iBRA-net localisation study is a UK based prospective, multi-centre platform study, comparing the safety and efficacy of novel localisation devices with wire-guided breast lesion localisation for wide local excision, using MagseedÂź as the pilot intervention group. Centres performing breast lesion localisation for wide local excision or excision biopsy will be eligible to participate if using one of the included devices. Further intervention arms will be added as new devices are CE marked. Outcomes will be collected via an online database. The primary outcome measure will be identification of the index lesion. Participating surgeons will be asked to record shared learning events via online questionnaires and focus group interviews to inform future study arms. Ethics and dissemination: The study will aim to collect data on 950 procedures for each intervention (MagseedÂź and wire localisation) from UK breast centres over an 18-month period. Shared learning will be prospectively evaluated via thematic analysis to refine breast localisation technique and to promote early identification of potential pitfalls and problems. Results will be presented at national and international conferences and published in peer reviewed journals. Registration: This is a UK national audit registered with Manchester University NHS Foundation Trust

    Supermassive Black Hole Binaries: The Search Continues

    Full text link
    Gravitationally bound supermassive black hole binaries (SBHBs) are thought to be a natural product of galactic mergers and growth of the large scale structure in the universe. They however remain observationally elusive, thus raising a question about characteristic observational signatures associated with these systems. In this conference proceeding I discuss current theoretical understanding and latest advances and prospects in observational searches for SBHBs.Comment: 17 pages, 4 figures. To appear in the Proceedings of 2014 Sant Cugat Forum on Astrophysics. Astrophysics and Space Science Proceedings, ed. C.Sopuerta (Berlin: Springer-Verlag

    Measurement of the p-pbar -> Wgamma + X cross section at sqrt(s) = 1.96 TeV and WWgamma anomalous coupling limits

    Full text link
    The WWgamma triple gauge boson coupling parameters are studied using p-pbar -> l nu gamma + X (l = e,mu) events at sqrt(s) = 1.96 TeV. The data were collected with the DO detector from an integrated luminosity of 162 pb^{-1} delivered by the Fermilab Tevatron Collider. The cross section times branching fraction for p-pbar -> W(gamma) + X -> l nu gamma + X with E_T^{gamma} > 8 GeV and Delta R_{l gamma} > 0.7 is 14.8 +/- 1.6 (stat) +/- 1.0 (syst) +/- 1.0 (lum) pb. The one-dimensional 95% confidence level limits on anomalous couplings are -0.88 < Delta kappa_{gamma} < 0.96 and -0.20 < lambda_{gamma} < 0.20.Comment: Submitted to Phys. Rev. D Rapid Communication

    Heavy quarkonium: progress, puzzles, and opportunities

    Get PDF
    A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the BB-factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing investigations. The plethora of newly-found quarkonium-like states unleashed a flood of theoretical investigations into new forms of matter such as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b}, and b\bar{c} bound states have been shown to validate some theoretical approaches to QCD and highlight lack of quantitative success for others. The intriguing details of quarkonium suppression in heavy-ion collisions that have emerged from RHIC have elevated the importance of separating hot- and cold-nuclear-matter effects in quark-gluon plasma studies. This review systematically addresses all these matters and concludes by prioritizing directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K. Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D. Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A. Petrov, P. Robbe, A. Vair

    Comprehensive lung injury pathology induced by mTOR inhibitors

    Get PDF
    Molecular Targets in Oncology[Abstract] Interstitial lung disease is a rare side effect of temsirolimus treatment in renal cancer patients. Pulmonary fibrosis is characterised by the accumulation of extracellular matrix collagen, fibroblast proliferation and migration, and loss of alveolar gas exchange units. Previous studies of pulmonary fibrosis have mainly focused on the fibro-proliferative process in the lungs. However, the molecular mechanism by which sirolimus promotes lung fibrosis remains elusive. Here, we propose an overall cascade hypothesis of interstitial lung diseases that represents a common, partly underlying synergism among them as well as the lung pathogenesis side effects of mammalian target of rapamycin inhibitors

    Self-help groups challenge health care systems in the US and UK

    Get PDF
    Purpose: This research considers how self-help groups (SHGs) and self- help organizations (SHOs) contribute to consumerist trends in two different societies: United States and United Kingdom. How do the health care systems and the voluntary sectors affect the kinds of social changes that SHGs/SHOs make? Methodology/approach: A review of research on the role of SHGs/SHOs in contributing to national health social movements in the UK and US was made. Case studies of the UK and the US compare the characteristics of their health care systems and their voluntary sector. Research reviews of two community level self-help groups in each country describe the kinds of social changes they made. Findings: The research review verified that SHGs/SHOs contribute to national level health social movements for patient consumerism. The case studies showed that community level SHGs/SHOs successfully made the same social changes but on a smaller scale as the national movements, and the health care system affects the kinds of community changes made. Research limitations: A limited number of SHGs/SHOs within only two societies were studied. Additional SHGs/SHOs within a variety of societies need to be studied. Originality/value of chapter Community SHGs/SHOs are often trivialized by social scientists as just inward-oriented support groups, but this chapter shows that local groups contribute to patient consumerism and social changes but in ways that depend on the kind of health care system and societal context

    Measurement of the correlation between flow harmonics of different order in lead-lead collisions at √sNN = 2.76 TeV with the ATLAS detector

    Get PDF
    Correlations between the elliptic or triangular flow coefficients vm (m=2 or 3) and other flow harmonics vn (n=2 to 5) are measured using √sNN=2.76 TeV Pb+Pb collision data collected in 2010 by the ATLAS experiment at the LHC, corresponding to an integrated luminosity of 7 ÎŒb−1. The vm−vn correlations are measured in midrapidity as a function of centrality, and, for events within the same centrality interval, as a function of event ellipticity or triangularity defined in a forward rapidity region. For events within the same centrality interval, v3 is found to be anticorrelated with v2 and this anticorrelation is consistent with similar anticorrelations between the corresponding eccentricities, Δ2 and Δ3. However, it is observed that v4 increases strongly with v2, and v5 increases strongly with both v2 and v3. The trend and strength of the vm−vn correlations for n=4 and 5 are found to disagree with Δm−Δn correlations predicted by initial-geometry models. Instead, these correlations are found to be consistent with the combined effects of a linear contribution to vn and a nonlinear term that is a function of v22 or of v2v3, as predicted by hydrodynamic models. A simple two-component fit is used to separate these two contributions. The extracted linear and nonlinear contributions to v4 and v5 are found to be consistent with previously measured event-plane correlations

    Search for vectorlike B quarks in events with one isolated lepton, missing transverse momentum, and jets at √s = 8 TeV with the ATLAS detector

    Get PDF
    A search has been performed for pair production of heavy vectorlike down-type (B) quarks. The analysis explores the lepton-plus-jets final state, characterized by events with one isolated charged lepton (electron or muon), significant missing transverse momentum, and multiple jets. One or more jets are required to be tagged as arising from b quarks, and at least one pair of jets must be tagged as arising from the hadronic decay of an electroweak boson. The analysis uses the full data sample of pp collisions recorded in 2012 by the ATLAS detector at the LHC, operating at a center-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 20.3 fb −1 . No significant excess of events is observed above the expected background. Limits are set on vectorlike B production, as a function of the B branching ratios, assuming the allowable decay modes are B → Wt/Zb/Hb. In the chiral limit with a branching ratio of 100% for the decay B → Wt, the observed (expected) 95% C.L. lower limit on the vectorlike B mass is 810 GeV (760 GeV). In the case where the vectorlike B quark has branching ratio values corresponding to those of an SU(2) singlet state, the observed (expected) 95% C.L. lower limit on the vectorlike B mass is 640 GeV (505 GeV). The same analysis, when used to investigate pair production of a colored, charge 5/3 exotic fermion T 5/3 , with subsequent decay T 5/3 → Wt, sets an observed (expected) 95% C.L. lower limit on the T 5/3 mass of 840 GeV (780 GeV)
    • 

    corecore