48 research outputs found

    PANDA Phase One - PANDA collaboration

    Get PDF
    The Facility for Antiproton and Ion Research (FAIR) in Darmstadt, Germany, provides unique possibilities for a new generation of hadron-, nuclear- and atomic physics experiments. The future antiProton ANnihilations at DArmstadt (PANDA or P¯ANDA) experiment at FAIR will offer a broad physics programme, covering different aspects of the strong interaction. Understanding the latter in the non-perturbative regime remains one of the greatest challenges in contemporary physics. The antiproton–nucleon interaction studied with PANDA provides crucial tests in this area. Furthermore, the high-intensity, low-energy domain of PANDA allows for searches for physics beyond the Standard Model, e.g. through high precision symmetry tests. This paper takes into account a staged approach for the detector setup and for the delivered luminosity from the accelerator. The available detector setup at the time of the delivery of the first antiproton beams in the HESR storage ring is referred to as the Phase One setup. The physics programme that is achievable during Phase One is outlined in this paper

    Precision resonance energy scans with the PANDA experiment at FAIR: Sensitivity study for width and line shape measurements of the X(3872)

    Get PDF
    This paper summarises a comprehensive Monte Carlo simulation study for precision resonance energy scan measurements. Apart from the proof of principle for natural width and line shape measurements of very narrow resonances with PANDA, the achievable sensitivities are quantified for the concrete example of the charmonium-like X(3872) state discussed to be exotic, and for a larger parameter space of various assumed signal cross-sections, input widths and luminosity combinations. PANDA is the only experiment that will be able to perform precision resonance energy scans of such narrow states with quantum numbers of spin and parities that differ from J P C = 1 - -

    Ten millennia of hepatitis B virus evolution

    Get PDF
    Hepatitis B virus (HBV) has been infecting humans for millennia and remains a global health problem, but its past diversity and dispersal routes are largely unknown. We generated HBV genomic data from 137 Eurasians and Native Americans dated between similar to 10,500 and similar to 400 years ago. We date the most recent common ancestor of all HBV lineages to between similar to 20,000 and 12,000 years ago, with the virus present in European and South American hunter-gatherers during the early Holocene. After the European Neolithic transition, Mesolithic HBV strains were replaced by a lineage likely disseminated by early farmers that prevailed throughout western Eurasia for similar to 4000 years, declining around the end of the 2nd millennium BCE. The only remnant of this prehistoric HBV diversity is the rare genotype G, which appears to have reemerged during the HIV pandemic.Molecular Technology and Informatics for Personalised Medicine and Healt

    The potential of Λ\Lambda and Ξ\Xi^- studies with PANDA at FAIR

    No full text
    International audienceThe antiproton experiment PANDA at FAIR is designed to bring hadron physics to a new level in terms of scope, precision and accuracy. In this work, its unique capability for studies of hyperons is outlined. We discuss ground-state hyperons as diagnostic tools to study non-perturbative aspects of the strong interaction, and fundamental symmetries. New simulation studies have been carried out for two benchmark hyperon-antihyperon production channels: pˉpΛˉΛ{\bar{p}}p \rightarrow {\bar{\varLambda }}\varLambda and pˉpΞˉ+Ξ{\bar{p}}p \rightarrow {\bar{\varXi }}^+\varXi ^-. The results, presented in detail in this paper, show that hyperon-antihyperon pairs from these reactions can be exclusively reconstructed with high efficiency and very low background contamination. In addition, the polarisation and spin correlations have been studied, exploiting the weak, self-analysing decay of hyperons and antihyperons. Two independent approaches to the finite efficiency have been applied and evaluated: one standard multidimensional efficiency correction approach, and one efficiency independent approach. The applicability of the latter was thoroughly evaluated for all channels, beam momenta and observables. The standard method yields good results in all cases, and shows that spin observables can be studied with high precision and accuracy already in the first phase of data taking with PANDA

    Observation of η_(c)(1S, 2S) and χ_(cJ) decays to 2(π⁺π^(−))η via ψ(3686) radiative transitions

    No full text
    Based on 2.7×109 ψ(3686) decays collected with the BESIII detector, the radiative decay ψ(3686)→γ2(π+π−)η is investigated to measure properties of S- and P-wave charmonium states. The branching fraction of the decay ηc(1S)→2(π+π−)η, which is found to have a strong dependence on the interference pattern between ηc(1S) and non-ηc(1S) processes, is measured in both destructive and constructive interference scenarios for the first time. The mass and width of the ηc(1S) are measured to be M=(2984.14±0.13±0.38) MeV/c2 and Γ=(28.82±0.11±0.82) MeV, respectively. Clear signals for the decays of the χcJ(J=0,1,2) and the ηc(2S) to 2(π+π−)η are also observed for the first time, and the corresponding branching fractions are measured. The ratio of the branching fractions between the ηc(2S) and ηc(1S) decays is significantly lower than the theoretical prediction, which might suggest different dynamics in their decays

    Observation of D → a₀(980)π in the decays D⁰ → π⁺π^(−)η and D⁺ → π⁺π⁰η

    No full text
    We report the first amplitude analysis of the decays D0→π+π−η and D+→π+π0η using a data sample taken with the BESIII detector at the center-of-mass energy of 3.773 GeV, corresponding to an integrated luminosity of 7.9 fb−1. The contribution from the process D0(+)→a0(980)+π−(0) is significantly larger than the D0(+)→a0(980)−(0)π+ contribution. The ratios B(D0→a0(980)+π−)/B(D0→a0(980)−π+) and B(D+→a0(980)+π0)/B(D+→a0(980)0π+) are measured to be 7.5+2.5−0.8stat.±1.7syst. and 2.6±0.6stat.±0.3syst., respectively. The measured D0 ratio disagrees with the theoretical predictions by orders of magnitudes, thus implying a substantial contribution from final-state interactions
    corecore