656 research outputs found
High efficiency thermionic converter studies
Research in thermionic energy conversion technology is reported. The objectives were to produce converters suitable for use in out of core space reactors, radioisotope generators, and solar satellites. The development of emitter electrodes that operate at low cesium pressure, stable low work function collector electrodes, and more efficient means of space charge neutralization were investigated to improve thermionic converter performance. Potential improvements in collector properties were noted with evaporated thin film barium oxide coatings. Experiments with cesium carbonate suggest this substance may provide optimum combinations of cesium and oxygen for thermionic conversion
The neuroscience of vision-based grasping: a functional review for computational modeling and bio-inspired robotics
The topic of vision-based grasping is being widely studied using various techniques and
with different goals in humans and in other primates. The fundamental related findings are
reviewed in this paper, with the aim of providing researchers from different fields, including
intelligent robotics and neural computation, a comprehensive but accessible view on the
subject. A detailed description of the principal sensorimotor processes and the brain areas
involved in them is provided following a functional perspective, in order to make this survey
especially useful for computational modeling and bio-inspired robotic application
Black hole hair formation in shift-symmetric generalised scalar-tensor gravity
A linear coupling between a scalar field and the Gauss–Bonnet invariant is the only known interaction term between a scalar and the metric that: respects shift symmetry; does not lead to higher order equations; inevitably introduces black hole hair in asymptotically flat, 4-dimensional spacetimes. Here we focus on the simplest theory that includes such a term and we explore the dynamical formation of scalar hair. In particular, we work in the decoupling limit that neglects the backreaction of the scalar onto the metric and evolve the scalar configuration numerically in the background of a Schwarzschild black hole and a collapsing dust star described by the Oppenheimer–Snyder solution. For all types of initial data that we consider, the scalar relaxes at late times to the known, static, analytic configuration that is associated with a hairy, spherically symmetric black hole. This suggests that the corresponding black hole solutions are indeed endpoints of collapse
Stability of general-relativistic accretion disks
Self-gravitating relativistic disks around black holes can form as transient
structures in a number of astrophysical scenarios such as binary neutron star
and black hole-neutron star coalescences, as well as the core-collapse of
massive stars. We explore the stability of such disks against runaway and
non-axisymmetric instabilities using three-dimensional hydrodynamics
simulations in full general relativity using the THOR code. We model the disk
matter using the ideal fluid approximation with a -law equation of
state with . We explore three disk models around non-rotating black
holes with disk-to-black hole mass ratios of 0.24, 0.17 and 0.11. Due to metric
blending in our initial data, all of our initial models contain an initial
axisymmetric perturbation which induces radial disk oscillations. Despite these
oscillations, our models do not develop the runaway instability during the
first several orbital periods. Instead, all of the models develop unstable
non-axisymmetric modes on a dynamical timescale. We observe two distinct types
of instabilities: the Papaloizou-Pringle and the so-called intermediate type
instabilities. The development of the non-axisymmetric mode with azimuthal
number m = 1 is accompanied by an outspiraling motion of the black hole, which
significantly amplifies the growth rate of the m = 1 mode in some cases.
Overall, our simulations show that the properties of the unstable
non-axisymmetric modes in our disk models are qualitatively similar to those in
Newtonian theory.Comment: 30 pages, 21 figure
Properties of the Volume Operator in Loop Quantum Gravity II: Detailed Presentation
The properties of the Volume operator in Loop Quantum Gravity, as constructed
by Ashtekar and Lewandowski, are analyzed for the first time at generic
vertices of valence greater than four. The present analysis benefits from the
general simplified formula for matrix elements of the Volume operator derived
in gr-qc/0405060, making it feasible to implement it on a computer as a matrix
which is then diagonalized numerically. The resulting eigenvalues serve as a
database to investigate the spectral properties of the volume operator.
Analytical results on the spectrum at 4-valent vertices are included. This is a
companion paper to arXiv:0706.0469, providing details of the analysis presented
there.Comment: Companion to arXiv:0706.0469. Version as published in CQG in 2008.
More compact presentation. Sign factor combinatorics now much better
understood in context of oriented matroids, see arXiv:1003.2348, where also
important remarks given regarding sigma configurations. Subsequent
computations revealed some minor errors, which do not change qualitative
results but modify some numbers presented her
Impaired peripheral reaching and on-line corrections in patient DF: optic ataxia with visual form agnosia
An influential model of vision suggests the presence of two visual streams within the brain: a dorsal occipito-parietal stream which mediates action and a ventral occipito-temporal stream which mediates perception. One of the cornerstones of this model is DF, a patient with visual form agnosia following bilateral ventral stream lesions. Despite her inability to identify and distinguish visual stimuli, DF can still use visual information to control her hand actions towards these stimuli. These observations have been widely interpreted as demonstrating a double dissociation from optic ataxia, a condition observed after bilateral dorsal stream damage in which patients are unable to act towards objects that they can recognize. In Experiment 1, we investigated how patient DF performed on the classical diagnostic task for optic ataxia, reaching in central and peripheral vision. We replicated recent findings that DF is remarkably inaccurate when reaching to peripheral targets, but not when reaching in free vision. In addition we present new evidence that her peripheral reaching errors follow the optic ataxia pattern increasing with target eccentricity and being biased towards fixation. In Experiments 2 and 3, for the first time we examined DF’s on-line control of reaching using a double-step paradigm in fixation-controlled and free-vision versions of the task. DF was impaired when performing fast on-line corrections on all conditions tested, similarly to optic ataxia patients. Our findings question the long-standing assumption that DF’s dorsal visual stream is functionally intact and that her on-line visuomotor control is spared. In contrast, in addition to visual form agnosia, DF also has visuomotor symptoms of optic ataxia which are most likely explained by bilateral damage to the superior parietal occipital cortex. We thus conclude that patient DF can no longer be considered as an appropriate single-case model for testing the neural basis of perception and action dissociations
Properties of the Volume Operator in Loop Quantum Gravity I: Results
We analyze the spectral properties of the volume operator of Ashtekar and
Lewandowski in Loop Quantum Gravity, which is the quantum analogue of the
classical volume expression for regions in three dimensional Riemannian space.
Our analysis considers for the first time generic graph vertices of valence
greater than four. Here we find that the geometry of the underlying vertex
characterizes the spectral properties of the volume operator, in particular the
presence of a `volume gap' (a smallest non-zero eigenvalue in the spectrum) is
found to depend on the vertex embedding. We compute the set of all
non-spatially diffeomorphic non-coplanar vertex embeddings for vertices of
valence 5--7, and argue that these sets can be used to label spatial
diffeomorphism invariant states. We observe how gauge invariance connects
vertex geometry and representation properties of the underlying gauge group in
a natural way. Analytical results on the spectrum on 4-valent vertices are
included, for which the presence of a volume gap is proved. This paper presents
our main results; details are provided by a companion paper arXiv:0706.0382v1.Comment: 36 pages, 7 figures, LaTeX. See also companion paper
arXiv:0706.0382v1. Version as published in CQG in 2008. See arXiv:1003.2348
for important remarks regarding the sigma configurations. Subsequent
computations have revealed some minor errors, which do not change the
qualitative results but modify some of the numbers presented her
Gravitational Wave Extraction in Simulations of Rotating Stellar Core Collapse
We perform simulations of general relativistic rotating stellar core collapse
and compute the gravitational waves (GWs) emitted in the core bounce phase of
three representative models via multiple techniques. The simplest technique,
the quadrupole formula (QF), estimates the GW content in the spacetime from the
mass quadrupole tensor. It is strictly valid only in the weak-field and
slow-motion approximation. For the first time, we apply GW extraction methods
in core collapse that are fully curvature-based and valid for strongly
radiating and highly relativistic sources. We employ three extraction methods
computing (i) the Newman-Penrose (NP) scalar Psi_4, (ii)
Regge-Wheeler-Zerilli-Moncrief (RWZM) master functions, and (iii)
Cauchy-Characteristic Extraction (CCE) allowing for the extraction of GWs at
future null infinity, where the spacetime is asymptotically flat and the GW
content is unambiguously defined. The latter technique is the only one not
suffering from residual gauge and finite-radius effects. All curvature-based
methods suffer from strong non-linear drifts. We employ the fixed-frequency
integration technique as a high-pass waveform filter. Using the CCE results as
a benchmark, we find that finite-radius NP extraction yields results that agree
nearly perfectly in phase, but differ in amplitude by ~1-7% at core bounce,
depending on the model. RWZM waveforms, while in general agreeing in phase,
contain spurious high-frequency noise of comparable amplitudes to those of the
relatively weak GWs emitted in core collapse. We also find remarkably good
agreement of the waveforms obtained from the QF with those obtained from CCE.
They agree very well in phase but systematically underpredict peak amplitudes
by ~5-11% which is comparable to the NP results and is within the uncertainties
associated with core collapse physics. (abridged)Comment: 26 pages, 10 figures, 5 tables, matches published versio
The Current Status of Binary Black Hole Simulations in Numerical Relativity
Since the breakthroughs in 2005 which have led to long term stable solutions
of the binary black hole problem in numerical relativity, much progress has
been made. I present here a short summary of the state of the field, including
the capabilities of numerical relativity codes, recent physical results
obtained from simulations, and improvements to the methods used to evolve and
analyse binary black hole spacetimes.Comment: 14 pages; minor changes and corrections in response to referee
Comparative analysis of homology models of the Ah receptor ligand binding domain: Verification of structure-function predictions by site-directed mutagenesis of a nonfunctional receptor
The aryl hydrocarbon receptor (AHR) is a ligand-dependent transcription factor that mediates the biological and toxic effects of a wide variety of structurally diverse chemicals, including the toxic environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). While significant interspecies differences in AHR ligand binding specificity, selectivity, and response have been observed, the structural determinants responsible for those differences have not been determined, and homology models of the AHR ligand-binding domain (LBD) are available for only a few species. Here we describe the development and comparative analysis of homology models of the LBD of 16 AHRs from 12 mammalian and nonmammalian species and identify the specific residues contained within their ligand binding cavities. The ligand-binding cavity of the fish AHR exhibits differences from those of mammalian and avian AHRs, suggesting a slightly different TCDD binding mode. Comparison of the internal cavity in the LBD model of zebrafish (zf) AHR2, which binds TCDD with high affinity, to that of zfAHR1a, which does not bind TCDD, revealed that the latter has a dramatically shortened binding cavity due to the side chains of three residues (Tyr296, Thr386, and His388) that reduce the amount of internal space available to TCDD. Mutagenesis of two of these residues in zfAHR1a to those present in zfAHR2 (Y296H and T386A) restored the ability of zfAHR1a to bind TCDD and to exhibit TCDD-dependent binding to DNA. These results demonstrate the importance of these two amino acids and highlight the predictive potential of comparative analysis of homology models from diverse species. The availability of these AHR LBD homology models will facilitate in-depth comparative studies of AHR ligand binding and ligand-dependent AHR activation and provide a novel avenue for examining species-specific differences in AHR responsiveness. © 2013 American Chemical Society
- …