526 research outputs found

    Quantum dot mode-locked frequency comb with ultra-stable 25.5 GHz spacing between 20°C and 120°C

    Get PDF
    Semiconductor mode-locked lasers (MLLs) are promising frequency comb sources for dense wavelength-division-multiplexing (DWDM) data communications. Practical data communication requires a frequency-stable comb source in a temperature-varying environment and a minimum tone spacing of 25 GHz to support high-speed DWDM transmissions. To the best of our knowledge, however, to date, there have been no demonstrations of comb sources that simultaneously offer a high repetition rate and stable mode spacing over an ultrawide temperature range. Here, we report a frequency comb source based on a quantum dot (QD) MLL that generates a frequency comb with stable mode spacing over an ultrabroad temperature range of 20–120°C. The two-section passively mode-locked InAs QD MLL comb source produces an ultra-stable fundamental repetition rate of 25.5 GHz (corresponding to a 25.5 GHz spacing between adjacent tones in the frequency domain) with a variation of 0.07 GHz in the tone spacing over the tested temperature range. By keeping the saturable absorber reversely biased at − 2    V , stable mode-locking over the whole temperature range can be achieved by tuning the current of the gain section only, providing easy control of the device. At an elevated temperature of 100°C, the device shows a 6 dB comb bandwidth of 4.81 nm and 31 tones with > 36    dB optical signal-to-noise ratio. The corresponding relative intensity noise, averaged between 0.5 GHz and 10 GHz, is − 146    dBc / Hz . Our results show the viability of the InAs QD MLLs as ultra-stable, uncooled frequency comb sources for low-cost, large-bandwidth, and low-energy-consumption optical data communications.Royal Academy of Engineering (RF201617/16/28); Engineering and Physical Sciences Research Council (EP/R041792/1, EP/T01394X/1)

    Quantum dot mode-locked frequency comb with ultra-stable 25.5 GHz spacing between 20 °C and 120 °C

    Get PDF
    Semiconductor mode-locked lasers (MLLs) are promising frequency comb sources for dense wavelength-division-multiplexing (DWDM) data communications. Practical data communication requires a frequency-stable comb source in a temperature-varying environment and a minimum tone spacing of 25 GHz to support high-speed DWDM transmissions. To the best of our knowledge, however, to date, there have been no demonstrations of comb sources that simultaneously offer a high repetition rate and stable mode spacing over an ultrawide temperature range. Here, we report a frequency comb source based on a quantum dot (QD) MLL that generates a frequency comb with stable mode spacing over an ultrabroad temperature range of 20–120°C. The two-section passively mode-locked InAs QD MLL comb source produces an ultra-stable fundamental repetition rate of 25.5 GHz (corresponding to a 25.5 GHz spacing between adjacent tones in the frequency domain) with a variation of 0.07 GHz in the tone spacing over the tested temperature range. By keeping the saturable absorber reversely biased at −2 V , stable mode-locking over the whole temperature range can be achieved by tuning the current of the gain section only, providing easy control of the device. At an elevated temperature of 100°C, the device shows a 6 dB comb bandwidth of 4.81 nm and 31 tones with >36 dB optical signal-to-noise ratio. The corresponding relative intensity noise, averaged between 0.5 GHz and 10 GHz, is −146 dBc/Hz . Our results show the viability of the InAs QD MLLs as ultra-stable, uncooled frequency comb sources for low-cost, large-bandwidth, and low-energy-consumption optical data communications

    MicroRNA-196b is an independent prognostic biomarker in patients with pancreatic cancer

    Get PDF
    microRNA-196bは膵癌において異常高発現しており,多変量解析で不良な予後に相関した.その阻害剤は膵癌細胞株において抗腫瘍効果を示すことから,microRNA-196bは診断バイオマーカーおよび治療標的となることが示唆された

    Expression of PPARδ in multistage carcinogenesis of the colorectum: implications of malignant cancer morphology

    Get PDF
    Whether peroxisome proliferator-activated receptor (PPAR) δ is a good target for the chemoprevention and/or treatment of colorectal cancer (CRC) remains controversial. Our goal was to examine PPARδ expression in multistage carcinogenesis of the colorectum and to assess the relevance of PPARδ in CRC. Immunohistochemical analysis indicated that PPARδ expression increased from normal mucosa to adenomatous polyps to CRC. In cancer tissues, the PPARδ protein was accumulated only in those cancer cells with highly malignant morphology, as represented by a large-sized nucleus, round-shaped nucleus, and presence of clear nucleoli. Interestingly, the cancer tissue often contained both PPARδ-positive and -negative areas, each retaining their respective specific morphological features. Moreover, this pattern persisted even when PPARδ-positive and -negative cells were aligned next to each other within a single cancer nest or gland and was present in the majority of CRC cases. Immunohistochemistry for Ki-67 proliferation marker showed no significant correlation between Ki-67 and PPARδ in CRC samples. Based on Western blot analysis and quantitative RT–PCR, high PPARδ protein expression correlated with high PPARδ mRNA levels. Peroxisome proliferator-activated receptor δ may have a supporting role in tumorigenesis, and the close association between PPARδ expression and malignant morphology of CRC cells suggests a pivotal role in cancer tissue

    Upregulation of AEBP1 in endothelial cells promotes tumor angiogenesis in colorectal cancer

    Get PDF
    血管新生は大腸がんの重要な治療標的である.本論文では,大腸がんの腫瘍血管関連遺伝子を探索し,AEBP1(Adipocyte enhancer binding protein 1)の血管内皮細胞における高発現を同定し,AEBP1が腫瘍血管新生促進に働くことを明らかにした

    A search for resonant production of ttˉt\bar{t} pairs in $4.8\ \rm{fb}^{-1}ofintegratedluminosityof of integrated luminosity of p\bar{p}collisionsat collisions at \sqrt{s}=1.96\ \rm{TeV}$

    Get PDF
    We search for resonant production of tt pairs in 4.8 fb^{-1} integrated luminosity of ppbar collision data at sqrt{s}=1.96 TeV in the lepton+jets decay channel, where one top quark decays leptonically and the other hadronically. A matrix element reconstruction technique is used; for each event a probability density function (pdf) of the ttbar candidate invariant mass is sampled. These pdfs are used to construct a likelihood function, whereby the cross section for resonant ttbar production is estimated, given a hypothetical resonance mass and width. The data indicate no evidence of resonant production of ttbar pairs. A benchmark model of leptophobic Z \rightarrow ttbar is excluded with m_{Z'} < 900 GeV at 95% confidence level.Comment: accepted for publication in Physical Review D Sep 21, 201

    Combined search for the standard model Higgs boson decaying to a bb pair using the full CDF data set

    Get PDF
    We combine the results of searches for the standard model Higgs boson based on the full CDF Run II data set obtained from sqrt(s) = 1.96 TeV p-pbar collisions at the Fermilab Tevatron corresponding to an integrated luminosity of 9.45/fb. The searches are conducted for Higgs bosons that are produced in association with a W or Z boson, have masses in the range 90-150 GeV/c^2, and decay into bb pairs. An excess of data is present that is inconsistent with the background prediction at the level of 2.5 standard deviations (the most significant local excess is 2.7 standard deviations).Comment: To be published in Phys. Rev. Lett (v2 contains minor updates based on comments from PRL

    Search for Neutral Higgs Bosons in Events with Multiple Bottom Quarks at the Tevatron

    Get PDF
    The combination of searches performed by the CDF and D0 collaborations at the Fermilab Tevatron Collider for neutral Higgs bosons produced in association with b quarks is reported. The data, corresponding to 2.6 fb-1 of integrated luminosity at CDF and 5.2 fb-1 at D0, have been collected in final states containing three or more b jets. Upper limits are set on the cross section multiplied by the branching ratio varying between 44 pb and 0.7 pb in the Higgs boson mass range 90 to 300 GeV, assuming production of a narrow scalar boson. Significant enhancements to the production of Higgs bosons can be found in theories beyond the standard model, for example in supersymmetry. The results are interpreted as upper limits in the parameter space of the minimal supersymmetric standard model in a benchmark scenario favoring this decay mode.Comment: 10 pages, 2 figure
    corecore