2,695 research outputs found

    Governing urban wetlands for green growth in the Western Region Megapolis of Sri Lanka

    Get PDF
    The Western Region Megapolis (WRM) of Sri Lanka, the conurbation associated with Greater Colombo and covering the entire Western Province, is the thriving economic center of the country. According to the State of Sri Lankan Cities 2018 report (GoSL 2018), the city accounts for 40% of Sri Lanka’s gross domestic product (GDP), 30% of its population and is the nation’s administrative center. The WRM is also endowed with wetlands of international importance. This includes the Bellanwila-Attidiya marshes: a 370-ha freshwater marsh in southern Colombo rich in biodiversity (Box 1); the Colombo Flood Detention Area: a 400-ha network of marshes and canals that traverse the DISCUSSION BRIEF An aerial view of the city of Colombo in Sri Lanka with its network of wetlands supporting urban dwellers - A hub for green growth. Photo: Martin Seemungal city; and the Muthurajawela marsh: a 2,500-ha saltwater marsh in northern Colombo, which is the largest saline peat bog in Sri Lanka (IUCN and CEA 2006). The aim of this brief is to support the efforts of the Government of Sri Lanka to leverage the WRM wetlands to foster green growth. Green growth promotes economic development alongside environmental sustainability, and is gaining traction as a model to achieve sustainable urban development globally (Hammer et al. 2011). According to OECD (2013: 9), governments promote green growth “to create jobs and attract firms and investment, while improving local environmental quality and addressing global environmental challenges, particularly climate change.

    Kinetics of the reaction of nitric oxide with hydrogen

    Get PDF
    Mixtures of NO and H2 diluted in argon or krypton were heated by incident shock waves, and the infrared emission from the fundamental vibration-rotation band of NO at 5.3 microns was used to monitor the time-varying NO concentration. The reaction kinetics were studied in the temperature range 2400-4500 K using a shock-tube technique. The decomposition of nitric oxide behind the shock was found to be modeled well by a fifteen-reaction system. A principle result of the study was the determination of the rate constant for the reaction H + NO yields N + OH, which may be the rate-limiting step for NO removal in some combustion systems. Experimental values of k sub 1 were obtained for each test through comparisons of measured and numerically predicted NO profiles

    Water quality and water availability variations in an upland Galloway loch with special reference to dissolved organic matter and the distribution of benthic diatoms

    Get PDF
    Upland waters in acid sensitive regions of Scotland are vulnerable to several disturbance processes that most importantly include atmospheric pollution and climate change as well as to local land use. Monitoring in the Round Loch of Glenhead (RLGH) since 1988 has shown that both water acidity and sulphate concentration have declined while the concentration of dissolved organic matter (DOM) has steadily increased. Currently, it is unclear if increasing DOM reflects climate change effects or relief from acid pollution. This report concerns recent research at the RLGH on relating seasonal changes in water supply and coloured dissolved organic matter (cDOM) to the distributions of benthic algae (diatoms). Diatoms are primarily limited by light which in turn varies according to season, water depth and water transparency. cDOM in lake water strongly influences water transparency and our central hypothesis is that benthic diatom distributions are influenced by changes in cDOM concentrations and light availability

    Physical disruption of intervertebral disc promotes cell clustering and a degenerative phenotype

    Get PDF
    © 2019, The Author(s). To test the hypothesis that physical disruption of an intervertebral disc disturbs cell-matrix binding, leading to cell clustering and increased expression of matrix degrading enzymes that contribute towards degenerative disc cell phenotype. Lumbar disc tissue was removed at surgery from 21 patients with disc herniation, 11 with disc degeneration, and 8 with adolescent scoliosis. 5 μm sections were examined with histology, and 30-µm sections by confocal microscopy. Antibodies were used against integrin α5beta1, matrix metalloproteinases (MMP) 1, MMP-3, caspase 3, and denatured collagen types I and II. Spatial associations were sought between cell clustering and various degenerative features. An additional, 11 non-herniated human discs were used to examine causality: half of each specimen was cultured in a manner that allowed free ‘unconstrained’ swelling (similar to a herniated disc in vivo), while the other half was cultured within a perspex ring that allowed ‘constrained’ swelling. Changes were monitored over 36 h using live-cell imaging. 1,9-Di-methyl methylene blue (DMMB) assay for glycosaminoglycan loss was carried out from tissue medium. Partially constrained specimens showed little swelling or cell movement in vitro. In contrast, unconstrained swelling significantly increased matrix distortion, glycosaminoglycan loss, exposure of integrin binding sites, expression of MMPs 1 and 3, and collagen denaturation. In the association studies, herniated disc specimens showed changes that resembled unconstrained swelling in vitro. In addition, they exhibited increased cell clustering, apoptosis, MMP expression, and collagen denaturation compared to ‘control’ discs. Results support our hypothesis. Further confirmation will require longitudinal animal experiments

    H2 reformation in post-shock regions

    Full text link
    H2 formation is an important process in post-shock regions, since H2 is an active participant in the cooling and shielding of the environment. The onset of H2 formation therefore has a strong effect on the temperature and chemical evolution in the post shock regions. We recently developed a model for H2 formation on a graphite surface in warm conditions. The graphite surface acts as a model system for grains containing large areas of polycyclic aromatic hydrocarbon structures. Here this model is used to obtain a new description of the H2 formation rate as a function of gas temperature that can be implemented in molecular shock models. The H2 formation rate is substantially higher at high gas temperatures as compared to the original implementation of this rate in shock models, because of the introduction of H atoms which are chemically bonded to the grain (chemisorption). Since H2 plays such a key role in the cooling, the increased rate is found to have a substantial effect on the predicted line fluxes of an important coolant in dissociative shocks [O I] at 63.2 and 145.5 micron. With the new model a better agreement between model and observations is obtained. Since one of the goals of Herschel/PACS will be to observe these lines with higher spatial resolution and sensitivity than the former observations by ISO-LWS, this more accurate model is very timely to help with the interpretation of these future results.Comment: 12 pages, 3 figures, 1 table, accepted in MNRAS Letter

    Decomposition of NO studied by infrared emission and CO laser absorption

    Get PDF
    A diagnostic technique for monitoring the concentration of NO using absorption of CO laser radiation was developed and applied in a study of the decomposition kinetics of NO. Simultaneous measurements of infrared emission by NO at 5.3 microns were also made to validate the laser absorption technique. The data were obtained behind incident shocks in NO-N2O-Ar (or Kr) mixtures, with temperatures in the range 2400-4100 K. Rate constants for dominant reactions were inferred from comparisons with computer simulations of the reactive flow

    On the hierarchical classification of G Protein-Coupled Receptors

    Get PDF
    Motivation: G protein-coupled receptors (GPCRs) play an important role in many physiological systems by transducing an extracellular signal into an intracellular response. Over 50% of all marketed drugs are targeted towards a GPCR. There is considerable interest in developing an algorithm that could effectively predict the function of a GPCR from its primary sequence. Such an algorithm is useful not only in identifying novel GPCR sequences but in characterizing the interrelationships between known GPCRs. Results: An alignment-free approach to GPCR classification has been developed using techniques drawn from data mining and proteochemometrics. A dataset of over 8000 sequences was constructed to train the algorithm. This represents one of the largest GPCR datasets currently available. A predictive algorithm was developed based upon the simplest reasonable numerical representation of the protein's physicochemical properties. A selective top-down approach was developed, which used a hierarchical classifier to assign sequences to subdivisions within the GPCR hierarchy. The predictive performance of the algorithm was assessed against several standard data mining classifiers and further validated against Support Vector Machine-based GPCR prediction servers. The selective top-down approach achieves significantly higher accuracy than standard data mining methods in almost all cases

    Book Reviews

    Get PDF
    Reviews of the following books: Maine: A Bibliography of Its History by John D. Haskell, Jr.; Tombstones and Paving Blocks: The History of the Granite Industry in Maine by Roger E. Grindle; Josiah Volunteered: A Collection of Diaries, Letters and Photographs of Josiah H. Sturtevant, His Wife Helen and His Four Children edited by Arnold H. Sturtevan

    The Circumstellar Environment of High-Mass Protostellar Objects: IV. C17O Observations and Depletion

    Full text link
    We observe 84 candidate young high-mass sources in the rare isotopologues C17O and C18O to investigate whether there is evidence for depletion (freeze-out) towards these objects. Observations of the J=2-1 transitions of C18O and C17O are used to derive the column densities of gas towards the sources and these are compared with those derived from submillimetre continuum observations. The derived fractional abundance suggests that the CO species show a range of degrees of depletion towards the objects. We then use the radiative transfer code RATRAN to model a selection of the sources to confirm that the spread of abundances is not a result of assumptions made when calculating the column densities. We find a range of abundances of C17O that cannot be accounted for by global variations in either the temperature or dust properties and so must reflect source to source variations. The most likely explanation is that different sources show different degrees of depletion of the CO. Comparison of the C17O linewidths of our sources with those of CS presented by other authors reveal a division of the sources into two groups. Sources with a CS linewidth >3 km/s have low abundances of C17O while sources with narrower CS lines have typically higher C17O abundances. We suggest that this represents an evolutionary trend. Depletion towards these objects shows that the gas remains cold and dense for long enough for the trace species to deplete. The range of depletion measured suggests that these objects have lifetimes of 2-4x10^5 years.Comment: 18 pages. Accepted for publication in Astronomy & Astrophysic
    • …
    corecore