120 research outputs found

    Infrared cutoffs and the adiabatic limit in noncommutative spacetime

    Full text link
    We discuss appropriate infrared cutoffs and their adiabatic limit for field theories on the noncommutative Minkowski space in the Yang-Feldman formalism. In order to do this, we consider a mass term as interaction term. We show that an infrared cutoff can be defined quite analogously to the commutative case and that the adiabatic limit of the two-point function exists and coincides with the expectation, to all orders.Comment: 19 page

    Quality assessment of atmospheric surface fields over the Baltic Sea from an ensemble of regional climate model simulations with respect to ocean dynamics

    Get PDF
    Climate model results for the Baltic Sea region from an ensemble of eight simulations using the Rossby Centre Atmosphere model version 3 (RCA3) driven with lateral boundary data from global climate models (GCMs) are compared with results from a downscaled ERA40 simulation and gridded observations from 1980-2006. The results showed that data from RCA3 scenario simulations should not be used as forcing for Baltic Sea models in climate change impact studies because biases of the control climate significantly affect the simulated changes of future projections. For instance, biases of the sea ice cover in RCA3 in the present climate affect the sensitivity of the model's response to changing climate due to the ice-albedo feedback. From the large ensemble of available RCA3 scenario simulations two GCMs with good performance in downscaling experiments during the control period 1980-2006 were selected. In this study, only the quality of atmospheric surface fields over the Baltic Sea was chosen as a selection criterion. For the greenhouse gas emission scenario A1B two transient simulations for 1961-2100 driven by these two GCMs were performed using the regional, fully coupled atmosphere-ice-ocean model RCAO. It was shown that RCAO has the potential to improve the results in downscaling experiments driven by GCMs considerably, because sea surface temperatures and sea ice concentrations are calculated more realistically with RCAO than when RCA3 has been forced with surface boundary data from GCMs. For instance, the seasonal 2 m air temperature cycle is closer to observations in RCAO than in RCA3 downscaling simulations. However, the parameterizations of air-sea fluxes in RCAO need to be improved

    Atomic scale analysis of the GaP Si 100 heterointerface by in situ reflection anisotropy spectroscopy and ab initio density functional theory

    Get PDF
    A microscopic understanding of the formation of polar on nonpolar interfaces is a prerequisite for well defined heteroepitaxial preparation of III V compounds on 100 silicon for next generation high performance devices. Energetically and kinetically driven Si 100 step formations result in majority domains of monohydride terminated Si dimers oriented either parallel or perpendicular to the step edges. Here, the intentional variation of the Si 100 surface reconstruction controls the sublattice orientation of the heteroepitaxial GaP film, as observed by in situ reflection anisotropy spectroscopy RAS in chemical vapor ambient and confirmed by benchmarking to surface science analytics in ultrahigh vacuum. Ab initio density functional calculations of both abrupt and compensated interfaces are carried out. For P rich chemical potentials at abrupt interfaces, Si P bonds are energetically favored over Si Ga bonds, in agreement with in situ RAS experiments. The energetically most favorable interface is compensated with an intermixed interfacial layer. In situ RAS reveals that the GaP sublattice orientation depends on the P chemical potential during nucleation, which agrees with a kinetically limited formation of abrupt interface

    The quiet crossing of ocean tipping points

    Get PDF
    Anthropogenic climate change profoundly alters the ocean’s environmental conditions, which, in turn, impact marine ecosystems. Some of these changes are happening fast and may be difficult to reverse. The identification and monitoring of such changes, which also includes tipping points, is an ongoing and emerging research effort. Prevention of negative impacts requires mitigation efforts based on feasible research-based pathways. Climate-induced tipping points are traditionally associated with singular catastrophic events (relative to natural variations) of dramatic negative impact. High-probability high-impact ocean tipping points due to warming, ocean acidification, and deoxygenation may be more fragmented both regionally and in time but add up to global dimensions. These tipping points in combination with gradual changes need to be addressed as seriously as singular catastrophic events in order to prevent the cumulative and often compounding negative societal and Earth system impacts

    Resummation of mass terms in perturbative massless quantum field theory

    Get PDF
    The neutral massless scalar quantum field Φ\Phi in four-dimensional space-time is considered, which is subject to a simple bilinear self-interaction. Is is well-known from renormalization theory that adding a term of the form −m22Φ2-\frac{m^2}{2} \Phi^2 to the Lagrangean has the formal effect of shifting the particle mass from the original zero value to m after resummation of all two-leg insertions in the Feynman graphs appearing in the perturbative expansion of the S-matrix. However, this resummation is accompanied by some subtleties if done in a proper mathematical manner. Although the model seems to be almost trivial, is shows many interesting features which are useful for the understanding of the convergence behavior of perturbation theory in general. Some important facts in connection with the basic principles of quantum field theory and distribution theory are highlighted, and a remark is made on possible generalizations of the distribution spaces used in local quantum field theory. A short discussion how one can view the spontaneous breakdown of gauge symmetry in massive gauge theories within a massless framework is presented.Comment: 15 pages, LaTeX (style files included), one section adde

    Density functional theory study of the multimode Jahn-Teller effect – ground state distortion of benzene cation

    Get PDF
    The multideterminental-DFT approach performed to analyze Jahn-Teller (JT) active molecules is described. Extension of this method for the analysis of the adiabatic potential energy surfaces and the multimode JT effect is presented. Conceptually a simple model, based on the analogy between the JT distortion and reaction coordinates gives further information about microscopic origin of the JT effect. Within the harmonic approximation the JT distortion can be expressed as a linear combination of all totally symmetric normal modes in the low symmetry minimum energy conformation, which allows calculating the Intrinsic Distortion Path, IDP, exactly from the high symmetry nuclear configuration to the low symmetry energy minimum. It is possible to quantify the contribution of different normal modes to the distortion, their energy contribution to the total stabilization energy and how their contribution changes along the IDP. It is noteworthy that the results obtained by both multideterminental-DFT and IDP methods for different classes of JT active molecules are consistent and in agreement with available theoretical and experimental values. As an example, detailed description of the ground state distortion of benzene cation is given

    F18-FDG PET/CT imaging early predicts pathologic complete response to induction chemoimmunotherapy of locally advanced head and neck cancer: preliminary single-center analysis of the checkrad-cd8 trial

    Get PDF
    Aim In the CheckRad-CD8 trial patients with locally advanced head and neck squamous cell cancer are treated with a single cycle of induction chemo-immunotherapy (ICIT). Patients with pathological complete response (pCR) in the re-biopsy enter radioimmunotherapy. Our goal was to study the value of F-18-FDG PET/CT in the prediction of pCR after induction therapy. Methods Patients treated within the CheckRad-CD8 trial that additionally received FDG- PET/CT imaging at the following two time points were included: 3–14 days before (pre-ICIT) and 21–28 days after (post-ICIT) receiving ICIT. Tracer uptake in primary tumors (PT) and suspicious cervical lymph nodes (LN +) was measured using different quantitative parameters on EANM Research Ltd (EARL) accredited PET reconstructions. In addition, mean FDG uptake levels in lymphatic and hematopoietic organs were examined. Percent decrease (Δ) in FDG uptake was calculated for all parameters. Biopsy of the PT post-ICIT acquired after FDG-PET/CT served as reference. The cohort was divided in patients with pCR and residual tumor (ReTu). Results Thirty-one patients were included. In ROC analysis, ΔSUVmax PT performed best (AUC = 0.89) in predicting pCR (n = 17), with a decline of at least 60% (sensitivity, 0.77; specificity, 0.93). Residual SUVmax PT post-ICIT performed best in predicting ReTu (n = 14), at a cutpoint of 6.0 (AUC = 0.91; sensitivity, 0.86; specificity, 0.88). Combining two quantitative parameters (ΔSUVmax ≥ 50% and SUVmax PT post-ICIT ≤ 6.0) conferred a sensitivity of 0.81 and a specificity of 0.93 for determining pCR. Background activity in lymphatic organs or uptake in suspected cervical lymph node metastases lacked significant predictive value. Conclusion FDG-PET/CT can identify patients with pCR after ICIT via residual FDG uptake levels in primary tumors and the related changes compared to baseline. FDG-uptake in LN + had no predictive value. Trial registry ClinicalTrials.gov identifier: NCT03426657
    • …
    corecore