363 research outputs found
A global method for coupling transport with chemistry in heterogeneous porous media
Modeling reactive transport in porous media, using a local chemical
equilibrium assumption, leads to a system of advection-diffusion PDE's coupled
with algebraic equations. When solving this coupled system, the algebraic
equations have to be solved at each grid point for each chemical species and at
each time step. This leads to a coupled non-linear system. In this paper a
global solution approach that enables to keep the software codes for transport
and chemistry distinct is proposed. The method applies the Newton-Krylov
framework to the formulation for reactive transport used in operator splitting.
The method is formulated in terms of total mobile and total fixed
concentrations and uses the chemical solver as a black box, as it only requires
that on be able to solve chemical equilibrium problems (and compute
derivatives), without having to know the solution method. An additional
advantage of the Newton-Krylov method is that the Jacobian is only needed as an
operator in a Jacobian matrix times vector product. The proposed method is
tested on the MoMaS reactive transport benchmark.Comment: Computational Geosciences (2009)
http://www.springerlink.com/content/933p55085742m203/?p=db14bb8c399b49979ba8389a3cae1b0f&pi=1
Dissolved noble gases and stable isotopes as tracers of preferential fluid flow along faults in the Lower Rhine Embayment, Germany
Groundwater in shallow unconsolidated sedimentary aquifers close to the Bornheim fault in the Lower Rhine Embayment (LRE), Germany, has relatively low δ2H and δ18O values in comparison to regional modern groundwater recharge, and 4He concentrations up to 1.7 × 10−4 cm3 (STP) g–1 ± 2.2 % which is approximately four orders of magnitude higher than expected due to solubility equilibrium with the atmosphere. Groundwater age dating based on estimated in situ production and terrigenic flux of helium provides a groundwater residence time of ∼107 years. Although fluid exchange between the deep basal aquifer system and the upper aquifer layers is generally impeded by confining clay layers and lignite, this study’s geochemical data suggest, for the first time, that deep circulating fluids penetrate shallow aquifers in the locality of fault zones, implying that sub-vertical fluid flow occurs along faults in the LRE. However, large hydraulic-head gradients observed across many faults suggest that they act as barriers to lateral groundwater flow. Therefore, the geochemical data reported here also substantiate a conduit-barrier model of fault-zone hydrogeology in unconsolidated sedimentary deposits, as well as corroborating the concept that faults in unconsolidated aquifer systems can act as loci for hydraulic connectivity between deep and shallow aquifers. The implications of fluid flow along faults in sedimentary basins worldwide are far reaching and of particular concern for carbon capture and storage (CCS) programmes, impacts of deep shale gas recovery for shallow groundwater aquifers, and nuclear waste storage sites where fault zones could act as potential leakage pathways for hazardous fluids
Toxicity of Sediment-Associated Pesticides to Chironomus dilutus and Hyalella azteca
Two hundred sediment samples were collected and their toxicity evaluated to aquatic species in a previous study in the agriculturally dominated Central Valley of California, United States. Pyrethroid insecticides were the main contributors to the observed toxicity. However, mortality in approximately one third of the toxic samples could not be explained solely by the presence of pyrethroids in the matrices. Hundreds of pesticides are currently used in the Central Valley of California, but only a few dozen are analyzed in standard environmental monitoring. A significant amount of unexplained sediment toxicity may be due to pesticides that are in widespread use that but have not been routinely monitored in the environment, and even if some of them were, the concentrations harmful to aquatic organisms are unknown. In this study, toxicity thresholds for nine sediment-associated pesticides including abamectin, diazinon, dicofol, fenpropathrin, indoxacarb, methyl parathion, oxyfluorfen, propargite, and pyraclostrobin were established for two aquatic species, the midge Chironomus dilutus and the amphipod Hyalella azteca. For midges, the median lethal concentration (LC50) of the pesticides ranged from 0.18 to 964 μg/g organic carbon (OC), with abamectin being the most toxic and propargite being the least toxic pesticide. A sublethal growth endpoint using average individual ash-free dry mass was also measured for the midges. The no–observable effect concentration values for growth ranged from 0.10 to 633 μg/g OC for the nine pesticides. For the amphipods, fenpropathrin was the most toxic, with an LC50 of 1–2 μg/g OC. Abamectin, diazinon, and methyl parathion were all moderately toxic (LC50s 2.8–26 μg/g OC). Dicofol, indoxacarb, oxyfluorfen, propargite, and pyraclostrobin were all relatively nontoxic, with LC50s greater than the highest concentrations tested. The toxicity information collected in the present study will be helpful in decreasing the frequency of unexplained sediment toxicity in agricultural waterways
Elemental hydrochemistry assessment on its variation and quality status in Langat River, Western Peninsular Malaysia.
This paper discusses the hydrochemistry variation and its quality status in Langat River, based on the chemistry of major ions, metal concentrations and suitability for drinking purposes. Water samples were collected from 30 different stations to assess their hydrochemical characteristics. The physico-chemical parameters selected were temperature, electrical conductivity, total dissolved solids (TDS), salinity, dissolved oxygen , pH, redox potential, HCO3, Cl, SO4, NO3, Ca, Na, K, Mg, 27Al, 138Ba, 9Be, 111Cd, 59Co, 63Cu, 52Cr, 57Fe, 55Mn, 60Ni, 208Pb, 80Se and 66Zn to investigate the variation of the constituents in the river water. Most of the parameters comply with the Drinking Water Quality Standard of the World Health Organization and the Malaysian National Standard for Drinking Water Quality by the Malaysia Ministry of Health except for EC, TDS, Cl, HCO3, SO4, Na, Mg, Al, Fe and Se. The results show that the Langat River is unsuitable for drinking purposes directly without treatment
Hybrid off-river augmentation system as an alternative raw water resource: the hydrogeochemistry of abandoned mining ponds
The use of water from abandoned mining ponds under a hybrid off-river augmentation system (HORAS) has been initiated as an alternative water resource for raw water. However, it raises the questions over the safety of the use of such waters. In this study, the hydrogeochemical analysis of the waters is presented to assess the degree to which the water has been contaminated. Comparisons were made between sampling sites, i.e. abandoned mining ponds, active sand mining ponds and the receiving streams within Bestari Jaya, Selangor River basin. The aqueous geochemistry analysis showed different hydrochemical signatures of major elements between sites, indicating different sources of minerals in the water. Discharges from the sand mining ponds were found to contain elevated availability of dissolved concentrations of iron, manganese, lead, copper and zinc, among others. However, the quality of the water (from the main river) that is supplied for potable water consumption is at a satisfactory level despite being partly sourced from the abandoned mining ponds. In fact, all the metal concentrations detected were well below the Malaysia Ministry of Health guideline limits for untreated raw water. In addition, the results of the geochemical index analysis (i.e. geoaccumulation index, enrichment factor and modified contamination factor) showed that the rivers and abandoned mining ponds were generally unpolluted with respect to the metals found in sediments
Erratum to: Integration of soil science functions in the hydrogeological assessment of vulnerability
Scaling Behavior of Human Locomotor Activity Amplitude: Association with Bipolar Disorder
Scale invariance is a feature of complex biological systems, and abnormality of multi-scale behaviour may serve as an indicator of pathology. The hypothalamic suprachiasmatic nucleus (SCN) is a major node in central neural networks responsible for regulating multi-scale behaviour in measures of human locomotor activity. SCN also is implicated in the pathophysiology of bipolar disorder (BD) or manic-depressive illness, a severe, episodic disorder of mood, cognition and behaviour. Here, we investigated scaling behaviour in actigraphically recorded human motility data for potential indicators of BD, particularly its manic phase. A proposed index of scaling behaviour (Vulnerability Index [VI]) derived from such data distinguished between: [i] healthy subjects at high versus low risk of mood disorders; [ii] currently clinically stable BD patients versus matched controls; and [iii] among clinical states in BD patients
Anthropogenic perturbations of the silicon cycle at the global scale: Key role of the land-ocean transition
International audienceSilicon (Si), in the form of dissolved silicate (DSi), is a key nutrient in marine and continental ecosystems. DSi is taken up by organisms to produce structural elements (e.g., shells and phytoliths) composed of amorphous biogenic silica (bSiO(2)). A global mass balance model of the biologically active part of the modern Si cycle is derived on the basis of a systematic review of existing data regarding terrestrial and oceanic production fluxes, reservoir sizes, and residence times for DSi and bSiO(2). The model demonstrates the high sensitivity of biogeochemical Si cycling in the coastal zone to anthropogenic pressures, such as river damming and global temperature rise. As a result, further significant changes in the production and recycling of bSiO(2) in the coastal zone are to be expected over the course of this century
- …