85 research outputs found

    MOVPE studies of zincblende GaN on 3C-SiC/Si(0 0 1)

    Get PDF
    Cubic zincblende GaN films were grown by metalorganic vapour-phase epitaxy on 3C-SiC/Si (0 0 1) templates and characterized using Nomarski optical microscopy, atomic force microscopy, X-ray diffraction, and transmission-electron microscopy. In particular, structural properties were investigated of films where the growth temperature of a GaN epilayer varied in the range of 830 °C to 910 °C and the gas-phase V/III-ratio varied from 15 to 1200 at a constant reactor pressure of 300 Torr. It was observed that with increasing epi temperature at a constant V/III-ratio of 76, the film surface consisted of micrometer-sized elongated features aligned along [1 –1 0] up to a temperature of 880 °C. The zincblende phase purity of such samples was generally high with a wurtzite fraction of less than 1%. When grown above 880 °C the GaN surface morphology degraded and the zincblende phase purity reduced as a result of inclusions with the wurtzite phase. A progressive narrowing of the 002 reflection with increasing epi growth temperature suggested an improvement of the film mosaicity. With increasing V/III-ratio at a constant growth temperature of 880 °C, the film surface formed elongated features aligned along [1 –1 0] at V/III values between 38 and 300 but the morphology became granular at both lower and higher V/III values. The zincblende phase purity is high at V/III values below 300. A slight broadening of the 002 X-ray diffraction reflection with increasing V/III-ratio indicated a small degradation of mosaicity. Scanning electron diffraction analyses of cross-sectional transmission-electron micrographs taken of a selection of samples illustrated the spatial distribution, quantity and structure of wurtzite inclusions within the zincblende GaN matrix. Within the limits of this study, the optimum epilayer growth conditions at a constant pressure of 300 Torr were identified to be at a temperature around 860 °C to 880 °C and a V/III-ratio in the range of 23 to 76, resulting in relatively smooth, zincblende GaN films without significant wurtzite contamination

    Investigation of wurtzite formation in MOVPE-grown zincblende GaN epilayers on AlxGa1−xN nucleation layers

    Get PDF
    The influence of AlGaN nucleation layers on zincblende GaN epilayers was studied to investigate the formation of wurtzite phase inclusions in the epilayer. GaN epilayers grown on AlGaN nucleation layers with varying aluminum contents suffer from the increasing presence of wurtzite inclusions as the aluminum content of the nucleation layer increases. High-resolution transmission electron microscopy along with four-dimensional scanning transmission electron microscopy is used to investigate the origin of the wurtzite inclusions in the nucleation layer and at the GaN/AlGaN interface. It was observed that a GaN nucleation layer and an Al0.95Ga0.05N nucleation layer grew in the zincblende and wurtzite phase, respectively. These phases were then adopted by the overgrown GaN epilayers. For a GaN epilayer on an Al0.29Ga0.71N nucleation layer, wurtzite inclusions tend to form at the GaN/ Al0.29Ga0.71N interface due to strong {111}-type faceting observed in the zincblende nucleation layer. This strong faceting is correlated with an enrichment of aluminum in the upper part of the nucleation layer, as observed in energy dispersive x-ray spectroscopy, which may influence the kinetics or thermodynamics controlling the surface morpholog

    Polarity determination of crystal defects in zincblende GaN by aberration-corrected electron microscopy

    Get PDF
    Aberration-corrected scanning transmission electron microscopy techniques are used to study the bonding configuration between gallium cations and nitrogen anions at defects in metalorganic vapor-phase epitaxy-grown cubic zincblende GaN on vicinal (001) 3C-SiC/Si. By combining high-angle annular dark-field and annular bright-field imaging, the orientation and bond polarity of planar defects, such as stacking faults and wurtzite inclusions, were identified. It is found that the substrate miscut direction toward one of the 3C-SiC ⟨110⟩ in-plane directions is correlated with the crystallographic [1–10] in-plane direction and that the {111} planes with a zone axis parallel to the miscut have a Ga-polar character, whereas the {111} planes in the zone perpendicular to the miscut direction have N-polarity. The polarity of {111}-type stacking faults is maintained in the former case by rotating the coordination of Ga atoms by 180° around the ⟨111⟩ polar axes and in the latter case by a similar rotation of the coordination of the N atoms. The presence of small amounts of the hexagonal wurtzite phase on Ga-polar {111} planes and their total absence on N-polar {111} planes is tentatively explained by the preferential growth of wurtzite GaN in the [0001] Ga-polar direction under non-optimized growth conditions. I. INTRODUCTIO

    Photoluminescence efficiency of zincblende InGaN/GaN quantum wells

    Get PDF
    Growing green and amber emitting InGaN/GaN quantum wells in the zincblende, rather than the wurtzite, crystal phase has the potential to improve efficiency. However, optimization of the emission efficiency of these heterostructures is still required to compete with more conventional alternatives. Photoluminescence time decays were used to assess how the quantum well width and number of quantum wells affect the recombination rates, and temperature dependent photoluminescence was used to determine the factors affecting recombination efficiency. The radiative recombination lifetime was found to be approximately 600 ps and to increase weakly with well width, consistent with a change in the exciton binding energy. The relative efficiency at room temperature was found to increase by a factor of five when the number of wells was increased from one to five. Furthermore, the efficiency increased by factor 2.2 when the width was increased from 2.5 to 7.5 nm. These results indicate that thermionic emission is the most important process reducing efficiency at temperatures in excess of 100 K. Moreover, the weak dependence of the rate of radiative recombination on well width means that increasing well thickness is an effective way of suppressing thermionic emission and thereby increasing efficiency in zincblende InGaN/GaN quantum wells, in contrast to those grown in the wurtzite phase

    Exploring the usefulness of scenario archetypes in science-policy processes: experience across IPBES assessments

    Get PDF
    Scenario analyses have been used in multiple science-policy assessments to better understand complex plausible futures. Scenario archetype approaches are based on the fact that many future scenarios have similar underlying storylines, assumptions, and trends in drivers of change, which allows for grouping of scenarios into typologies, or archetypes, facilitating comparisons between a large range of studies. The use of scenario archetypes in environmental assessments foregrounds important policy questions and can be used to codesign interventions tackling future sustainability issues. Recently, scenario archetypes were used in four regional assessments and one ongoing global assessment within the Intergovernmental Science-Policy Platform for Biodiversity and Ecosystem Services (IPBES). The aim of these assessments was to provide decision makers with policy-relevant knowledge about the state of biodiversity, ecosystems, and the contributions they provide to people. This paper reflects on the usefulness of the scenario archetype approach within science-policy processes, drawing on the experience from the IPBES assessments. Using a thematic analysis of (a) survey data collected from experts involved in the archetype analyses across IPBES assessments, (b) notes from IPBES workshops, and (c) regional assessment chapter texts, we synthesize the benefits, challenges, and frontiers of applying the scenario archetype approach in a science-policy process. Scenario archetypes were perceived to allow syntheses of large amounts of information for scientific, practice-, and policy-related purposes, streamline key messages from multiple scenario studies, and facilitate communication of them to end users. In terms of challenges, they were perceived as subjective in their interpretation, oversimplifying information, having a limited applicability across scales, and concealing contextual information and novel narratives. Finally, our results highlight what methodologies, applications, and frontiers in archetype-based research should be explored in the future. These advances can assist the design of future large-scale sustainability-related assessment processes, aiming to better support decisions and interventions for equitable and sustainable futures

    Tamoxifen enhances the cytotoxic effects of nelfinavir in breast cancer cells

    Get PDF
    Introduction: The HIV protease inhibitor nelfinavir is currently under investigation as a new anti-cancer drug. Several studies have shown that nelfinavir induces cell cycle arrest, endoplasmic reticulum stress, autophagy, and apoptosis in cancer cells. In the present article, the effect of nelfinavir on human breast cancer cells is examined and potential combination treatments are investigated. Methods: The effects of nelfinavir and tamoxifen on the human breast cancer cell lines MCF7, T47 D, MDA-MB-453, and MDA-MB-435 were tested by analysing their influence on cell viability (via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay), apoptosis (annexin binding, poly(ADP-ribose) polymerase cleavage), autophagy (autophagy marker light chain 3B expression), endoplasmic reticulum stress (binding protein and activating transcription factor 3 expression), and the occurrence of oxidative stress (intracellular glutathione level). Results: Nelfinavir induced apoptosis in all four breast cancer cell lines tested, although the extent of autophagy and endoplasmic reticulum stress varied among the cell lines. The concentration of nelfinavir needed for an efficient induction of apoptosis in breast cancer cells could be reduced from 15 mu g/ml to 6 mu g/ml when combined with tamoxifen. At a concentration of 6 mu g/ml, tamoxifen substantially enhanced the endoplasmic reticulum stress reaction in those cell lines that responded to nelfinavir with binding protein (BiP) upregulation (MCF7, T47D), and enhanced autophagy in cell lines that responded to nelfinavir treatment with autophagy marker light chain 3B upregulation (MDA-MB-453). Although tamoxifen has been described to be able to induce oxidative stress at concentrations similar to those applied in this study (6 mu g/ml), we observed that nelfinavir but not tamoxifen reduced the intracellular glutathione level of breast cancer cells within hours of application by up to 32%, suggesting the induction of oxidative stress was an early event and an additional cause of the apoptosis induced by nelfinavir. Conclusions: The results demonstrate that nelfinavir may be an effective drug against breast cancer and could be combined with tamoxifen to enhance its efficacy against breast cancer cells. Moreover, the cytotoxic effect of a tamoxifen and nelfinavir combination was independent of the oestrogen receptor status of the analysed breast cancer cells, suggesting a potential benefit of a combination of these two drugs even in patients with no hormone-responsive tumours. We therefore recommend that clinical studies on nelfinavir with breast cancer patients should include this drug combination to analyse the therapeutic efficacy as well as the safety and tolerability of this potential treatment option

    Sub-surface imaging of porous GaN distributed Bragg reflectors via backscattered electrons

    Get PDF
    In this article, porous GaN distributed Bragg reflectors (DBRs) were fabricated by epitaxy of undoped/doped multilayers followed by electrochemical etching. We present backscattered electron scanning electron microscopy (BSE-SEM) for sub-surface plan-view imaging, enabling efficient, non-destructive pore morphology characterization. In mesoporous GaN DBRs, BSE-SEM images the same branching pores and Voronoi-like domains as scanning transmission electron microscopy. In microporous GaN DBRs, micrographs were dominated by first porous layer features (45 nm to 108 nm sub-surface) with diffuse second layer (153 nm to 216 nm sub-surface) contributions. The optimum primary electron landing energy (LE) for image contrast and spatial resolution in a Zeiss GeminiSEM 300 was approximately 20 keV. BSE-SEM detects porosity ca. 295 nm sub-surface in an overgrown porous GaN DBR, yielding low contrast that is still first porous layer dominated. Imaging through a ca. 190 nm GaN cap improves contrast. We derived image contrast, spatial resolution, and information depth expectations from semi-empirical expressions. These theoretical studies echo our experiments as image contrast and spatial resolution can improve with higher LE, plateauing towards 30 keV. BSE-SEM is predicted to be dominated by the uppermost porous layer's uppermost region, congruent with experimental analysis. Most pertinently, information depth increases with LE, as observed

    Tamoxifen induces oxidative stress and apoptosis in oestrogen receptor-negative human cancer cell lines

    Get PDF
    Recent data have demonstrated that the anti-oestrogen tamoxifen (TAM) is able to facilitate apoptosis in cancer cells not expressing oestrogen receptor (ER). In an attempt to identify the biochemical pathway for this phenomenon, we investigated the role of TAM as an oxidative stress agent. In two ER-negative human cancer cell lines, namely T-leukaemic Jurkat and ovarian A2780 cancer cells, we have demonstrated that TAM is able to generate oxidative stress, thereby causing thiol depletion and activation of the transcriptional factor NF-κB. As described for other oxidative agents, TAM was able to induce either cell proliferation or apoptosis depending on the dose. When used at the lowest dose tested (0.1 μM), a slight proliferative effect of TAM was noticed in terms of cell counts and DNA synthesis rate, whereas at higher doses (10 μM) a consistent occurrence of apoptosis was detected. Importantly, the induction of apoptosis by TAM is not linked to down-regulation or functional inactivation by phosphorylation of the antiapoptotic bcl-2 protein. © 1999 Cancer Research Campaig

    The IPBES Conceptual Framework - connecting nature and people

    Get PDF
    The first public product of the Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES) is its Conceptual Framework. This conceptual and analytical tool, presented here in detail, will underpin all IPBES functions and provide structure and comparability to the syntheses that IPBES will produce at different spatial scales, on different themes, and in different regions. Salient innovative aspects of the IPBES Conceptual Framework are its transparent and participatory construction process and its explicit consideration of diverse scientific disciplines, stakeholders, and knowledge systems, including indigenous and local knowledge. Because the focus on co-construction of integrative knowledge is shared by an increasing number of initiatives worldwide, this framework should be useful beyond IPBES, for the wider research and knowledge-policy communities working on the links between nature and people, such as natural, social and engineering scientists, policy-makers at different levels, and decision-makers in different sectors of society
    corecore