7 research outputs found

    An Acute Case of Intoxication with Cyanobacteria and Cyanotoxins in Recreational Water in Salto Grande Dam, Argentina

    Get PDF
    Cyanobacterial blooms and hepatotoxic microcystins (MCs) usually occur in summer, constituting a sanitary and environmental problem in Salto Grande Dam, Argentina. Water sports and recreational activities take place in summer in this lake. We reported an acute case of cyanobacterial poisoning in Salto Grande dam, Argentina, which occurred in January 2007. Accidentally, a young man was immersed in an intense bloom of Microcystis spp. A level of 48.6 μg·L−1 of microcystin-LR was detected in water samples. Four hours after exposure, the patient showed nausea, abdominal pain and fever. Three days later, dyspnea and respiratory distress were reported. The patient was hospitalized in intensive care and diagnosed with an atypical pneumonia. Finally, a week after the exposure, the patient developed a hepatotoxicosis with a significant increase of hepatic damage biomarkers (ALT, AST and γGT). Complete recovery took place within 20 days. This is the first study to show an acute intoxication with microcystin-producing cyanobacteria blooms in recreational water

    Molecular Mechanisms of Microcystin Toxicity in Animal Cells

    Get PDF
    Microcystins (MC) are potent hepatotoxins produced by the cyanobacteria of the genera Planktothrix, Microcystis, Aphanizomenon, Nostoc and Anabaena. These cyclic heptapeptides have strong affinity to serine/threonine protein phosphatases (PPs) thereby acting as an inhibitor of this group of enzymes. Through this interaction a cascade of events responsible for the MC cytotoxic and genotoxic effects in animal cells may take place. Moreover MC induces oxidative stress in animal cells and together with the inhibition of PPs, this pathway is considered to be one of the main mechanisms of MC toxicity. In recent years new insights on the key enzymes involved in the signal-transduction and toxicity have been reported demonstrating the complexity of the interaction of these toxins with animal cells. Key proteins involved in MC up-take, biotransformation and excretion have been identified, demonstrating the ability of aquatic animals to metabolize and excrete the toxin. MC have shown to interact with the mitochondria. The consequences are the dysfunction of the organelle, induction of reactive oxygen species (ROS) and cell apoptosis. MC activity leads to the differential expression/activity of transcriptional factors and protein kinases involved in the pathways of cellular differentiation, proliferation and tumor promotion activity. This activity may result from the direct inhibition of the protein phosphatases PP1 and PP2A. This review aims to summarize the increasing data regarding the molecular mechanisms of MC toxicity in animal systems, reporting for direct MC interacting proteins and key enzymes in the process of toxicity biotransformation/excretion of these cyclic peptides
    corecore