37 research outputs found

    Biosynthesis of essential fatty acids in Octopus vulgaris (Cuvier, 1797): Molecular cloning, functional characterisation and tissue distribution of a fatty acyl elongase

    Get PDF
    Polyunsaturated fatty acids (PUFA) have been identified as key nutrients for the common octopus (Octopus vulgaris), particularly for its early life-cycle stages (paralarvae). Our overarching aim is to establish the essential fatty acid (FA) requirements for octopus paralarvae through determination of the enzymes of endogenous PUFA biosynthetic pathways. We here report on the molecular cloning and functional characterisation of a cDNA encoding a putative elongase of very long-chain fatty acids (Elovl), a critical enzyme that mediate the elongation of FA including PUFA. Our results suggested that the octopus Elovl is phylogenetically related to Elovl5 and Elovl2, two elongases with demonstrated roles in PUFA biosynthesis in vertebrates. Further evidence supporting a role of the octopus Elovl in PUFA biosynthesis was provided through functional characterisation of its activity in yeast. It was confirmed that expression of the octopus Elovl conferred on yeast the ability to elongate some C18 and C20 PUFA, while C22 PUFA substrates remained unmodified. The substrate specificities exhibited by the octopus elongase were consistent with those of vertebrate Elovl5. Interestingly, the octopus Elovl elongated n-6 PUFA substrates more efficiently than their analogous n-3 substrates, suggesting that n-6 PUFA may have particular biological significance in O. vulgaris. Finally, we investigated the potential role of the newly cloned Elovl in the biosynthesis of non-methylene-interrupted FA, compounds typically found in marine invertebrates and confirmed to be also present in the common octopus

    Aquatic pollution may favor the success of the invasive species A. franciscana

    Get PDF
    The genus Artemia consists of several bisexual and parthenogenetic sibling species. One of them, A. franciscana, originally restricted to the New World, becomes invasive when introduced into ecosystems out of its natural range of distribution. Invasiveness is anthropically favored by the use of cryptobiotic eggs in the aquaculture and pet trade. The mechanisms of out-competition of the autochthonous Artemia by the invader are still poorly understood. Ecological fitness may play a pivotal role, but other underlying biotic and abiotic factors may contribute. Since the presence of toxicants in hypersaline aquatic ecosystems has been documented, our aim here is to study the potential role of an organophosphate pesticide, chlorpyrifos, in a congeneric mechanism of competition between the bisexual A. franciscana (AF), and one of the Old World parthenogenetic siblings, A. parthenogenetica (PD). For this purpose we carried out life table experiments with both species, under different concentrations of the toxicant (0.1, 1 and 5. μg/l), and analyzed the cholinesterase inhibition at different developmental stages. The results evidence that both, AF and PD, showed an elevated tolerance to high ranges of chlorpyrifos, but AF survived better and its fecundity was less affected by the exposure to the pesticide than that of PD. The higher fecundity of AF is a selective advantage in colonization processes leading to its establishment as NIS. Besides, under the potential selective pressure of abiotic factors, such as the presence of toxicants, its higher resistance in terms of survival and biological fitness also indicates out-competitive advantages. © 2015This research was supported by the Spanish Ministry for Science and Innovation projects (CGL2005-02306 and CGL2008-04737-E) “Biodiversidad de Artemia (Branchiopoda, Anostraca) en el Mediterráneo Occidental, archipiélagos Balear y Canario. Efectos de A. franciscana como especie invasora. Implicaciones ecológicas y de interés en acuicultura” y “Biodiversidad amenazada en salinas mediterráneas”. S. Redón was supported by a Ph.D grant (FPI) from the Spanish Ministry of Science and Innovation. D. Guinot was supported by BANCAJA contract.Peer Reviewe

    Enriched on-grown Artemia metanauplii actively metabolise highly unsaturated fatty acid-rich phospholipids

    Get PDF
    On-grown (metanaupliar) stages of Artemia have been regarded as more adequate preys for early life-cycle stages of cephalopods, crustaceans, and a variety of fish species. In recent studies, we obtained successful enhancements of highly unsaturated fatty acids (HUFA) and polar lipids (PL) in enriched Artemia metanauplii using either a combination of a commercial, neutral lipid (NL)-based HUFA-rich emulsion and Soya lecithin, or HUFA-rich phospholipids. The present study aimed at exploring the molecular form under which dietary HUFA are actually deposited in the metanaupliar lipids. Thus, we analysed the fatty acid (FA) composition of the PL and NL fractions from enriched metanauplii, with special emphasis on the fate of docosahexaenoic acid (DHA) within Artemia lipids. The results show that on-grown Artemia actively translocated ingested FA contained from PL to NL classes including triacylglycerides

    Long-term effect of temperature on bioaccumulation of dietary metals and metallothionein induction in Sparus aurata

    Get PDF
    Previous studies have demonstrated that the commercial feed of aquacultured fish contains trace amounts of toxic and essential metals which can accumulate in tissues and finally be ingested by consumers. Recently rising temperatures, associated to the global warming phenomenon, have been reported as a factor to be taken into consideration in ecotoxicology, since temperature-dependent alterations in bioavailability, toxicokinetics and biotransformation rates can be expected. Sparus aurata were kept at 22. °C, 27. °C and 30. °C for 3. months in order to determine the temperature effect on metallothionein induction and metal bioaccumulation from a non-experimentally contaminated commercial feed. A significant temperature-dependent accumulation of cadmium (Cd), copper (Cu), mercury (Hg), zinc (Zn), lead (Pb) and iron (Fe) was found in liver, together with that of manganese (Mn), Fe and Zn in muscle. Hg presented the highest bioaccumulation factor, and essential metal homeostasis was disturbed in both tissues at warm temperatures. An enhancement of hepatic metallothionein induction was found in fish exposed to the highest temperature. © 2012 Elsevier Ltd.The study was supported by the Spanish National Plan for Research under Project CTM2006-14279-CO2-01 MEC-FEDER.Peer Reviewe

    Composition and metabolism of phospholipids in Octopus vulgaris and Sepia officinalis hatchlings.

    Get PDF
    The objective of the present study was to characterise the fatty acid (FA) profiles of the major phospholipids, of Octopus vulgaris and Sepia officinalis hatchlings, namely phosphatidylcholine (PC), phosphatidylserine (PS), phosphatidylinositol (PI) and phosphatidylethanolamine (PE); and to evaluate the capability of both cephalopod species on dietary phospholipid remodelling. Thus, O. vulgaris and S. officinalis hatchlings were in vivo incubated with 0.3μM of L-∝-1-palmitoyl-2-[1-14C]arachidonyl-PC or L-∝-1-palmitoyl-2-[1-14C]arachidonyl-PE. Octopus and cuttlefish hatchlings phospholipids showed a characteristic FA profiles with PC presenting high contents of 16:0 and 22:6n-3 (DHA); PS having high 18:0, DHA and 20:5n-3 (EPA); PI a high content of saturated FA; and PE showing high contents of DHA and EPA. Interestingly, the highest content of 20:4n-6 (ARA) was found in PE rather than PI. Irrespective of the phospholipid in which [1-14C]ARA was initially bound (either PC or PE), the esterification pattern of [1-14C]ARA in octopus lipids was similar to that found in their tissues with high esterification of this FA into PE. In contrast, in cuttlefish hatchlings [1-14C]ARA was mainly recovered in the same phospholipid that was provided. These results showed a characteristic FA profiles in the major phospholipids of the two species, as well as a contrasting capability to remodel dietary phospholipids, which may suggest a difference in phospholipase activities.En prens

    Comparative study on fatty acid metabolism of early stages of two crustacean species: Artemia sp. metanauplii and Grapsus adscensionis zoeae, as live prey for marine animals

    Get PDF
    The present study compared the lipid composition and in vivo capability of Artemia sp. metanauplii (the main live prey used in aquaculture) and Grapsus adscensionis zoeae (as a wild zooplankton model) to metabolise unsaturated fatty acids. The two species were incubated in vivo with 0.3μM of individual [1-14C]fatty acids (FA) including 18:1n-9, 18:2n-6, 18:3n-3, 20:4n-6 (ARA), 20:5n-3 (EPA) and 22:6n-3 (DHA) bound to bovine serum albumin (BSA). Compared to metanauplii, zoeae contained twice the content of polar lipids (PL) and eight-fold the content of long-chain polyunsaturated fatty acids (LC-PUFA). Artemia sp. metanauplii showed increased short chain fatty acid de novo synthesis from beta-oxidation of [1-14C]LC-PUFA, preferentially DHA. Of the LC-PUFA, DHA showed the highest esterification rate into Artemia sp. triacylglycerols. In contrast, in Grapsus zoeae [1-14C]DHA displayed the highest transformation rate into longer chain-length FAs and was preferentially esterified into PL. EPA and ARA, tended to be more easily incorporated and/or retained than DHA in Artemia sp. Moreover, both EPA and ARA were preferentially esterified into Artemia PL, which theoretically would favour their bioavailability to the larvae. In addition to the inherent better nutritional value of Grapsus zoeae due to their intrinsic lipid composition, the changes taking place after the lipid incorporation, point at two distinct models of lipid metabolism that indicate zoeae as a more suitable prey than Artemia sp. for the feeding of marine animals.info:eu-repo/semantics/publishedVersio

    A Genome-Wide Association Study Identifies the Skin Color Genes IRF4 , MC1R , ASIP , and BNC2 Influencing Facial Pigmented Spots

    No full text
    Facial pigmented spots are a common skin aging feature, but genetic predisposition has yet to be thoroughly investigated. We conducted a genome-wide association study for pigmented spots in 2,844 Dutch Europeans from the Rotterdam Study (mean age: 66.9±8.0 years; 47% male). Using semi-automated image analysis of high-resolution digital facial photographs, facial pigmented spots were quantified as the percentage of affected skin area (mean women: 2.0% ±0.9, men: 0.9% ±0.6). We identified genome-wide significant association with pigmented spots at three genetic loci: IRF4 (rs12203592, P=1.8 × 10(-27)), MC1R (compound heterozygosity score, P=2.3 × 10(-24)), and RALY/ASIP (rs6059655, P=1.9 × 10(-9)). In addition, after adjustment for the other three top-associated loci the BNC2 locus demonstrated significant association (rs62543565, P=2.3 × 10(-8)). The association signals observed at all four loci were successfully replicated (
    corecore