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Abstract 21 

    On-grown (metanaupliar) stages of Artemia, have been regarded as more adequate 22 

preys for early life-cycle stages of cephalopods, crustaceans, and a variety of fish 23 

species. In recent studies, we obtained successful enhancements of highly unsaturated 24 

fatty acids (HUFA) and polar lipids (PL) in enriched Artemia metanauplii using either a 25 

combination of a commercial, neutral lipid (NL)-based HUFA-rich emulsion and Soya 26 

lecithin, or HUFA-rich phospholipids. The present study aimed at exploring the 27 

molecular form under which dietary HUFA are actually deposited in the metanaupliar 28 

lipids. Thus, we analysed the fatty acid (FA) composition of the PL and NL fractions 29 

from enriched metanauplii, with special emphasis to the fate of docosahexaenoic acid 30 

(DHA) within Artemia lipids. The results show that on-grown Artemia actively 31 

translocated ingested FA contained into PL to NL classes including triacylglycerides. 32 
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1. Introduction 33 

    Highly unsaturated fatty acids (HUFA) and polar lipids (PL) are regarded as essential 34 

nutrients for marine species and beneficial aspects derived from the dietary intake of 35 

these compounds have been reported on survival, growth, normal development and 36 

stress tolerance (Cahu et al., 2009; Glencross, 2009; Kanazawa, 1997; Sargent et al., 37 

1997; Tocher et al., 2008; Tocher, 2010). For example, dietary intake of the HUFA 38 

docosahexaenoic acid (22:6n-3, DHA) is required for early life-cycle stages of marine 39 

finfish, since they have an apparently limited ability for endogenous biosynthesis of this 40 

essential nutrient (Bell et al., 2003; Tocher, 2010). On the other hand, phospholipids, a 41 

predominant fraction among PL, have emulsifying properties (Koven et al., 1993; Olsen 42 

et al., 1991) that may facilitate lipid absorption and increase the tolerance to stress 43 

conditions (Kanazawa, 1997). Importantly, HUFA delivered as PL have more beneficial 44 

effects than those delivered as neutral lipids (NL) (Cahu et al. 2003; Cahu et al. 2009; 45 

Gisbert et al., 2005; Rainuzzo et al., 1994). Additionally, live preys as copepods 46 

naturally contain high levels of essential HUFA, like eicosapentaenoic acid (20:5n-3, 47 

EPA) and DHA, predominantly esterified into phospholipids (Bell et al., 2003). 48 

    Enrichment protocols have been developed to enhance the nutritional quality of live 49 

preys used in aquatic larviculture (Conceição et al., 2010). Artemia, particularly its 50 

newly hatched naupliar stages, is arguably the most commonly used live prey in marine 51 

finfish and crustacean larviculture (Conceição et al., 2010; Sorgeloos et al., 2001). 52 

However, their suitability as a diet for marine larvae has been often questioned due to 53 

their relatively low HUFA and PL contents in comparison with natural preys such as 54 

copepods (Bell et al., 2003). Extensive investigations have been carried out on this 55 

subject, but it is still difficult to enrich live preys such Artemia with adequate levels of 56 

essential HUFA, particularly DHA (Tocher et al. 2010). DHA contents of enriched 57 

Artemia have been reported as unstable by different authors (Evjemo et al. 1997, 58 

Triantaphyllidis et al. 1995), since undesired metabolic conversions of lipid classes 59 

containing DHA (Harel et al., 1999; McEvoy et al., 1996; Rainuzzo et al., 1994) and 60 

from DHA to other FA (Navarro et al., 1999) may occur. Consequently, establishing 61 
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optimised protocols for the simultaneous bioencapsulation of HUFA-rich PL into 62 

Artemia is a challenge that needs to be urgently achieved. 63 

    On-grown stages of Artemia, namely metanauplii, are live preys less commonly used 64 

than nauplii, but regarded as having more adequate size for feeding early life-cycle 65 

stages of some organisms like cephalopods (Domingues et al. 2001; Iglesias et al., 66 

2006), crustaceans (Ritar et al., 2002) and a variety of fish species (Lim et al., 2003, 67 

Woods, 2003; Zaki and Saad, 2010). Information about the use of metanauplii or 68 

Artemia biomass as live preys is scarce as compared to that on the use of newly hatched 69 

nauplii. In a recent study, we succeeded in the simultaneous enhancement of HUFA and 70 

PL contents of Artemia metanauplii (Guinot et al., 2013). Two different enrichment 71 

diets were used: 1) a combination of soya lecithin (SL) and the commercial emulsion 72 

Easy DHA Selco (containing HUFA-rich NL); and 2) the commercial product Marine 73 

lecithin LC60 (ML), a HUFA-rich PL-based product with great potential as enrichment 74 

diet (Guinot et al., 2013). Beyond the goal of this former approach aiming at 75 

establishing optimised enrichment protocols, the present study focused at exploring the 76 

molecular form under which dietary HUFA were actually deposited in the metanaupliar 77 

lipids. We hereby show the FA compositions of the PL and NL fractions of the enriched 78 

metanauplii, with especial emphasis to the fate of DHA within Artemia lipids. 79 

 80 

2. Materials and methods 81 

2.1 Artemia hatching and culture 82 

    Artemia franciscana metanauplii were obtained from the hatching of Great Salt Lake 83 

cysts (INVE Aquaculture Nutrition, Dendermonde, Belgium). Cysts were incubated 84 

during 24 h in 1 L cylinder-conical glass tubes containing seawater (37 g L-1 salinity) at 85 

28°C, continuous light and vigorous aeration. After hatching, Instar I nauplii were 86 

placed in seawater at room temperature in 90 L cylindrical methacrylate containers, at a 87 

density of 4000 individuals L-1. Nauplii were fed daily microalgae Tetraselmis suecica 88 

at densities around 200000 cells mL-1. Artemia metanauplii were grown for 5 days, 89 
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attaining a mean length of 1.5 mm and subsequently used in the different enrichments 90 

procedures. 91 

2.2 Composition of products used in enrichment diets 92 

    Soya lecithin (SL, Korot SL, Alcoy, Spain) contained 74 % total lipids, mainly (80%) 93 

as PL, 52 % of total FA as linoleic acid (18:2n-6, LA) and lacked EPA and DHA. Easy 94 

DHA Selco (SS) contained 18 % DHA of total FA presented largely as NL. Marine 95 

lecithin LC60 (ML, PhosphoTech Laboratories, St. Herblain, France) contained 68 % 96 

total lipids (~50 % of TL being PL), with 13 % and 33 % of total FA as EPA and DHA, 97 

respectively. Soya and marine lecithin were dispersed in seawater with a domestic 98 

blender and Easy DHA Selco was self-dispersed following supplier’s instructions. FA 99 

of total lipids, PL and NL of Soya lecithin, Easy DHA Selco and Marine lecithin LC60, 100 

are shown in Table 1.  101 

2.3 Artemia metanauplii enrichments  102 

    Two (triplicated) enrichment treatments were established: Treatment 1 (termed as 103 

‘Treatment 3C’ by Guinot et al., 2013) consisted of a mixture of dispersed soya lecithin 104 

(0.3 g L-1) and Easy DHA Selco (0.3 g L-1); Treatment 2 consisted of a dispersion of 105 

Marine lecithin LC60 at 0.6 g L-1 (termed as ‘Treatment 3A’ by Guinot et al., 2013). 106 

The enrichment diets were dispensed at the beginning of the incubation and maintained 107 

for 4 h. The enrichment experiments were carried out by placing ~30000 five days old 108 

metanauplii in 0.5 L of filtered seawater at 28°C, vigorous aeration and continuous 109 

light. Metanauplii samples were collected and immediately stored at -80 °C for further 110 

analyses. 111 

2.4 Analysis of fatty acids from Artemia total, polar and neutral lipids 112 

    Total lipids from lyophilised Artemia samples were extracted according to the 113 

method of Folch et al. (1957) with the modifications described by Monroig et al. (2006). 114 

Two milligrams of total lipids were applied onto 20x20 cm Silica Gel 20 (Merck, 115 

Darmstadt, Germany) thin-layer chromatography (TLC) plates and subsequently eluted 116 

with a mixture of n-hexane:diethyl ether:acetic acid (85 :15: 1.5, v/v/v). One single PL 117 

fraction and two distinct NL fractions corresponding to triacylglycerides (TAG), and the 118 



---6 

combination of monoacylglycerides, diacylglycerides and free fatty acids (hereafter 119 

referred to as ‘combined fraction’, CF) were scraped from the plate after identification 120 

and quantification (Olsen and Henderson, 1989) with known standards. FA methyl 121 

esters (FAME) from total, polar and neutral (TAG and CF) lipids were prepared by 122 

direct acid transmethylation following the protocols described in Christie (2003). 123 

FAME were analysed with a Thermo gas chromatograph (Thermo Trace GC Ultra, 124 

Thermo Electron Corporation, Waltham, MA, USA) fitted with an on-column injection 125 

system and a FID detector. Analytical temperature was programmed from 50 ºC to 220 126 

°C. Chromatograms were integrated and analysed with Azur Datlys (St Martin d’Heres, 127 

France) software. FA were identified by comparison of retention times of each peak 128 

with those of well characterised standards. 129 

2.5 Statistical analysis 130 

    Statistical analyses were performed with the SPSS for Windows 15.0 statistical 131 

package (SPSS Inc., Chicago, IL, USA). Data are expressed as means ± standard 132 

deviations (n=3). The FA profiles obtained were integrated chemometrically in a 133 

principal component analysis (PCA) model. The score plot obtained after the generation 134 

of the two principal components was used to identify patterns of distribution of FA 135 

among treatments and lipid classes. 136 

 137 

3. Results 138 

    Total lipids from Treatment 1 metanauplii accounted for 16.5 ± 1.0 mg g dw-1. 139 

Quantification of the different lipid fractions prepared from Artemia metanauplii 140 

samples showed that PL accounted for 30 % of total lipids, whereas NL accounted for 141 

70 % (25% TAG and 16% CF) of total lipids in both treatments. FA composition of 142 

total lipids, PL and both NL fractions (TAG and CF) from Treatment 1 Artemia is 143 

shown in Table 2. The main FA found in total lipids included 16:0, 18:0, 18:1, 18:2n-6, 144 

18:3n-3, 22:5n-3 and 22:6n-3. DHA (22:6n-3), supplied in the enrichment diet of 145 

Treatment 1 mainly as NL (Table 1), reached up to 5.8 % in the total lipid fraction of 146 

metanauplii. While DHA represented only 0.8 % of total FA in PL, DHA contents of 147 
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12.7 % in TAG and 10.4 % in CF were found, indicating that it was mainly deposited 148 

into Artemia NL. Importantly, LA (18:2n-6), the main FA of Soya lecithin (Table 1), 149 

accounted for 6.8 % of total FA in PL, 10.9 % as TAG and 14.1 % in CF.  150 

    In Treatment 2, Artemia metanauplii contained 17.6 ± 0.1 mg g dw-1 total lipids. FA 151 

composition of total lipids, PL and both NL fractions from Treatment 2 metanauplii are 152 

presented in Table 3. The main FA found in the total lipid fraction were 16:0, 18:0, 153 

18:1, 18:3n-3, 20:5n-3 and DHA. Content of DHA, presented basically as PL in the 154 

enrichment diet Marine lecithin LC60 (Table 1), reached a value of 13.1 % in the total 155 

lipid fraction of Artemia metanauplii. Interestingly, only 1.9 % of total FA in the 156 

metanaupliar PL were as DHA, where the contents of this fatty acid attained 26.0 % of 157 

total FA in TAG and 22.2 % in CF. Clearly, this result showed again a preferential 158 

deposition of DHA in the NL of enriched Artemia. 159 

    For the sake of comparison, the FA profile of TL, PL and NL of unenriched 160 

metanauplii are presented in Table 4. Fractionation an chromatographic analysis 161 

allowed an estimation from the chromatographic signal of more than 90 % of the FA 162 

from TL being esterified in PL, with TAG and CF showing chromatograms with a very 163 

weak response and small number of peaks. Thus, only PL and TL FA from unenriched 164 

nauplii were introduced in the chemometric analysis. 165 

    The chemometric integration of the FA profiles as variables in a PCA model (Fig. 166 

1A) revealed that the first component (PC1) accounted for 45 % of the variance, and 167 

grouped the FA associated with Artemia intrinsic composition (18:0, 18:4n-3, 18:3n-3, 168 

20:0, 20:3n-3 and 22:0) on the positive side of the axis, whereas DHA loaded on the 169 

negative side. Component 2 (PC2) further explained 27 % of the variance and was 170 

associated with 16:1n-7, 18:2n-6, 20:4n-3 and 22:1n-11 on the positive side. The results 171 

of the factor score plot (Fig. 1B) clearly show differential distribution of the FA patterns 172 

of the lipid classes, with three distinctive groups corresponding to PL, NL and total 173 

lipids of enriched Artemia metanauplii. PL profiles, grouped on the positive side of PC1 174 

(showing association to 18:0, 18:4n-3, 18:3n-3, 20:3n-3 and 22:0), presented low 175 

dispersion, and were remarkably similar between treatments. NL profiles, grouped on 176 
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the opposite side of PC1, were also partly (Treatment 1) associated to the positive side 177 

of PC2 and the corresponding variables (DHA for PC1, and 16:1n-7, 18:2n-6, 20:4n-3 178 

and 22:1n-11 for PC2). Besides, NL patterns were less aggregated, possibly reflecting 179 

the enrichment diet impact versus Artemia FA intrinsic composition. Total lipid FA 180 

patterns grouped between PL and NL. Dietary effects on the FA patterns were apparent 181 

along PC2, and more marked on the FA profiles of NL, than on those of total lipids and 182 

PL in decreasing order. The lipids of unenriched control Artemia plotted next to the PL 183 

although could be still graphically segregated from them. 184 

 185 

4. Discussion 186 

    PL have been regarded as most adequate form to present DHA to marine larvae 187 

(Gisbert et al., 2005; Wold et al., 2007) since it is an abundant lipid component of 188 

larvae’s natural copepod diet (Bell et al., 2003; Sargent et al., 1999). Consequently, 189 

attempts to deliver HUFA into PL of live preys used in marine larviculture have been 190 

made (Harel et al., 1999; Rainuzzo et al., 1994). Marine lecithins, PL-rich materials 191 

containing remarkable amounts of HUFA, have been previously used to enrich live 192 

preys such as Artemia (McEvoy et al., 1996; Monroig et al., 2006). We recently showed 193 

that a novel product, the Marine lecithin LC60, was able to simultaneously enhance 194 

both PL and HUFA contents of Artemia metanauplii, with DHA accounting for up to 13 195 

% of total fatty acids (Guinot et al., 2013). However, the distribution of HUFA, 196 

particularly DHA, within the different lipid fractions of Artemia metanauplii suggests 197 

that these live preys rapidly metabolise the lipids of the enrichment diets during 198 

bioencapsulation.  199 

    Conversions of the enrichment diets were evidenced by an apparent translocation of 200 

DHA from the PL of the enrichment diet Marine lecithin LC60 to NL fractions of 201 

metanauplii enriched with this product (Treatment 2). Clearly, DHA accounted for 26.5 202 

% and 6.8 % of total FA in the PL and NL fractions, respectively, in the enrichment diet 203 

Marine lecithin LC60. Unexpectedly, the contents of DHA in PL from Treatment 2 204 

Artemia (enriched with LC60) were only 1.9 % of total FA, and the NL fractions TAG 205 
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and CF accumulated up to 22.2 and 26.0 % DHA, respectively. Despite such undesired 206 

conversions might occur, it is worth mentioning that LC60 appears as a highly efficient 207 

means for increasing the DHA content of both PL and NL fractions in enriched on- 208 

grown Artemia, as previously suggested by Harel et al. (1999) for nauplii. Non-enriched 209 

Artemia do not have significant amounts of DHA in their PL, so the presence of PL with 210 

~2 % in live preys can still have a physiological relevance for cultured marine fish 211 

larvae. Provided that DHA is virtually absent in both Artemia PL and NL (Bell et al., 212 

2003; Conceição et al., 2010), the differential contents of DHA between PL and NL of 213 

Treatment 2 Artemia cannot respond to a mere dilution effect of the enrichment diet 214 

lipids with those of Artemia. Otherwise, the ratio PL-DHA vs. NL-DHA existing in the 215 

enrichment diet should have been maintained constant in Artemia lipids. The 216 

translocation of DHA is further evidenced by its presence in transitory storage lipids, 217 

such as free fatty acids, monoacylglycerides and diacylglycerides, before it is eventually 218 

deposited into TAG.  219 

    Previous studies suggested that Artemia actively transform lipid components of the 220 

enrichment diets during the bioencapsulation process. Retroconversions of DHA to EPA 221 

via peroximal !-oxidation (Reddy et al., 2001) were firstly reported by Watanabe et al. 222 

(1994) and later demonstrated by Navarro et al. (1999) using radiolabeled FA. 223 

Moreover, changes in the positional distribution of FA of dietary TAG were also 224 

observed in Artemia nauplii enriched with fish oil ethyl esters and TAG (Ando and 225 

Narukawa, 2002; Ando and Oomi, 2001; Ando et al., 2004; Shiozaki and Ando, 2004). 226 

In line with our observations, DHA contained into fish roe PL was hydrolised and 227 

subsequently incorporated into TAG (Shiozaki and Ando, 2004).  228 

    The difficulties observed to modify the FA composition of Artemia PL might respond 229 

to their role as structural molecules in maintenance of cellular homeostasis. Thus, 230 

several studies have previously indicated the conservative nature of PL. Coutteau and 231 

Mourente (1997) found that absolute concentration of PL remained constant in Artemia 232 

throughout enrichment with TAG and FA ethyl esters and subsequent starvation. 233 

Consequently, no significant amount of DHA was incorporated into PL. Similar results 234 
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were obtained when enriching Artemia with cod liver oil and n-3 HUFA concentrates 235 

(Czesny et al., 1999). Navarro et al. (1999) indicated that radiolabeled C20 and C22 236 

HUFA delivered as ethyl esters and incorporated into TAG, presented low variability 237 

among lipid classes in enriched Artemia after starvation, while other dietary FA (16:0, 238 

18:0; 18:1, 18:2n-6 and 18:3n-3) exhibited higher mobilisation rates. They suggested 239 

that the transferred FA were used as substrates for energy production and for the 240 

conservation of membrane phospholipid structure, while HUFA such DHA that do not 241 

take part in those functions, were rather stored into NL. Whether such storage fate is a 242 

previous step towards its use for energy production remains to be elucidated. 243 

    Our PCA results support the above alluded to hypothesis by which the FA 244 

composition of PL from Artemia cannot be substantially altered. PL, associated to 18:0, 245 

18:4n-3, 18:2n-6, 20:0, 20:3n-3 and 22:0, remain remarkably constant between 246 

treatments. In addition, FA profiles from PL were similar to those from the TL and PL 247 

fractions of non-enriched metanauplii, indicating a conservative profile of PL. NL 248 

distribution in the score plot show a bigger dispersion and they are highly associated to 249 

DHA (present in both Marine lecithin LC60 and Easy DHA Selco) and LA (present in 250 

SL). PCA shows a marked effect of enrichment diet FA on NL, thus indicating a less 251 

conservative nature of NL in comparison to PL and possibly reflecting the metabolic 252 

activity that the incorporated FA are being submitted to. Importantly, PCA revealed that 253 

TAG appear to be a predominant metabolic fate of the DHA supplied through 254 

enrichment diet. The hydrolysis of DHA from dietary PL and subsequent re- 255 

esterification into NL might be a reflection of the apparent non-essential nature of DHA 256 

for Artemia (Navarro et al., 1992)  257 

    In addition to non-essential FA such as DHA, other essential FA also accumulate in 258 

NL of Artemia when supplied in excessive amounts. That is the case of the LA (18:2n- 259 

6), the most abundant FA of soya lecithin used in Treatment 1 and a constitutive FA of 260 

Artemia franciscana (Léger et al., 1986). LA contained in the soya lecithin, rather than 261 

remaining esterified as PL for its direct depostion in Artemia, was accumulated into 262 

TAG or else converted into other FA (Ito and Simpson, 1996; Schauer and Simpson, 263 
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1985). Several enzymes including phospholipases, acyl transferases and phosphatases 264 

might be responsible for the translocations of FA between PL and TAG occurring in 265 

different metabolic pathways such as the glycerol phosphate pathway (phospholipid and 266 

TAG metabolism interlink) and Lands’ cycle (Bankaitis, 2009; Gurr and Harwood, 267 

1991). Possibly, the study of the metabolic mechanisms underpinning the undesired 268 

conversions during Artemia enrichment, as well as the identification of specific 269 

enzymatic activities controlling them, might open a promising area of research in the 270 

future. Importantly for aquaculture, such investigations would help us to optimise the 271 

bioencapsulation of essential lipid components into Artemia. 272 

    In summary, on-grown Artemia actively convert FA delivered as PL to TAG, with 273 

DHA being preferentially transferred from dietary PL to TAG. The assimilation and 274 

metabolism of the FA contained in enrichment diets for Artemia involves an important 275 

handicap for bioencapsulation of essential lipid compounds and consequently for their 276 

use as live preys in larviculture. Further studies are required to elucidate the causes of 277 

such undesired conversions so that practical procedures to optimise the delivery of 278 

HUFA-rich PL into live preys can be implemented. 279 

 280 
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Figure 1. A) Component plot of principal component analysis (PCA) of selected fatty acids from total, neutral and polar lipids of Artemia 419 

metanauplii enriched with Soya Lecithin mixed with Easy DHA Selco and Marine Lecithin. B) Factor score plot of PCA of selected fatty 420 

acids from total, neutral and polar lipids of Artemia metanauplii enriched with Soya lecithin mixed with Easy DHA Selco (Treatment 1) or 421 

Marine lecithin (Treatment 2). Grouping is based on the lipid classes (total, polar or neutral) fatty acids of enriched Artemia metanauplii. 422 
A) 423 
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 425 
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Table 1. Selected fatty acid contents (percentage of total fatty acids) of total lipids, polar lipids (PL) and neutral lipids (NL) of products (Soya 428 

lecithin, Easy DHA Selco and Marine lecithin LC60) used in enrichment diet preparation.  429 

Fatty acid Soya lecithin Easy DHA Selco Marine lecithin LC60 
 Total lipids PL NL Total lipids PL NL Total lipids PL NL 
14:0 0.1 0.1 0.6 3.2 11.2 4.6 1.5 1.4 3.7 
15:0 0.1 0.1 0.4 0.5 0.5 0.7 0.6 0.6 0.9 
16:0 21.7 22.8 15.9 12.4 21.8 17.7 31.2 33.8 22.4 
16:1n-7 0.1 0.1 ND 4.5 4.5 6.7 0.5 0.1 2.8 
16:2 0.1 0.2 2.0 0.2 ND 0.3 0.9 0.9 2.1 
18:0 3.7 3.8 5.8 3.8 5.4 4.2 4.1 4.1 7.1 
18:1 15.2 15.6 28.4 13.8 14.9 16.7 2.1 3.8 27.1 
18:2n-6 52.0 51.5 31.6  4.7 19.0 5.1 0.5 0.2 4.5 
18:3n-3 4.1 4.1 2.9 1.1 2.4 1.2 ND 0.1 3.4 
18:4n-3 ND 0.0 ND 1.6 1.4 1.5 0.1 0.1 1.2 
20:0 0.1 0.2 0.5 0.5 0.9 0.2 ND 0.1 ND 
20:1n-9 ND 0.1 ND 2.5 ND 2.0 4.9 4.5 4.9 
20:4n-6 ND ND ND 1.5 0.7 1.4 1.8 1.9 0.8 
20:5n-3 ND ND ND 17.2 5.7 9.4 13.7 13.4 6.8 
22:0 0.4 0.4 ND 0.1 0.3 0.1 ND 0.1 ND 
22:1n-11 ND ND ND 1.3 ND 1.1 0.7 0.8 0.7 
22:6n-3 ND 0.0 ND 18.3 4.3 16.1 33.0 31.8 8.6 

ND, not detected. 430 
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Table 2. Selected fatty acid content (percentage of total fatty acids) of total lipids, polar 

lipids (PL) and neutral lipids (NL) fractions from Treatment 1 Artemia metanauplii. NL 

include two distinct fractions, one corresponding to triacylglycerides (TAG) and another 

to the combined fraction (CF) of monoacylglycerides, diacylglycerides and free fatty 

acids. Data represent mean ± standard deviation (n=3). 

 
 Total lipids PL NL 

   TAG CF 
14:0 0.9 ± 0.0 0.4 ± 0.0 1.0 ± 0.2 0.8 ± 0.1 
15:0 0.4 ± 0.0 0.3 ± 0.0 0.4 ± 0.0 1.2 ± 1.5 
16:0 14.2 ± 0.2 12.9 ± 0.4 13.6 ± 0.90 11.0 ± 0.7 
16:1n-7 3.6 ± 0.1 2.5 ± 0.5 4.4 ± 0.2 5.3 ± 1.4 
16:2 0.6 ± 0.0 1.1 ± 0.0 1.0 ± 0.1 1.4 ± 0.8 
16:3 0.5 ± 0.0 0.3 ± 0.0 0.5 ± 0.0 ND 
18:0 7.2 ± 0.1 10.1 ± 0.1 5.1 ± 0.4 3.3 ± 0.3 
18:1 26.2 ± 0.5 30.1 ± 0.6 20.4 ± 0.7 25.4 ± 1.0 
18:2n-6 9.1 ± 0.9 6.8 ± 0.4 10.9 ± 1.1 14.1 ± 1.6 
18:3n-3 11.2 ± 0.5 16.3 ± 0.3 7.1 ± 1.0 9.9 ± 0.5 
18:4n-3 2.2 ± 0.1 3.0 ± 0.1 1.0 ± 0.8 1.7 ± 0.1 
20:0 0.2 ± 0.0 0.2 ± 0.0 2.4 ± 0.1 1.4 ± 0.2 
20:1n-9 1.8 ± 0.0 1.3 ± 0.0 ND ND 
20:4n-6 1.5 ± 0.1 1.7 ± 0.0 1.4 ± 0.1 1.9 ± 0.1 
20:3n-3 0.4 ± 0.0 0.7 ± 0.0 0.2 ± 0.0 ND 
20:4n-3 0.4 ± 0.0 0.2 ± 0.0 0.5 ± 0.0 0.5 ± 0.1 
20:5n-3 7.6 ± 0.3 7.9 ± 0.2 7.1 ± 0.4 9.7 ± 0.8 
22:0 0.4 ± 0.0 0.8 ± 0.1 1.0 ± 0.8 ND 
22:1n-11 0.5 ± 0.0 0.1 ± 0.1 0.2 ± 0.0 0.4 ± 0.1 
22:5n-3 0.5 ± 0.0 0.1 ± 0.0 1.0 ±  0.1 0.7 ± 0.1 
22:6n-3 5.8 ± 0.3 0.8 ± 0.1 10.4 ± 0.7 12.7 ± 1.2 

ND, not detected. 
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Table 3. Selected fatty acid content (percentage of total fatty acids) of total lipids, polar 

lipids (PL) and neutral lipids (NL) fractions from Treatment 2 Artemia metanauplii. NL 

include two distinct fractions, one corresponding to triacylglycerides (TAG) and another 

to the combined fraction (CF) of monoacylglycerides, diacylglycerides and free fatty 

acids. Data represent mean ± standard deviation (n=3). 

 
 Total lipids PL NL 

   TAG CF 
14:0 0.7 ± 0.0 0.4 ± 0.0 0.7 ± 0.1 0.7 ± 0.2 
150 0.4 ± 0.0 0.3 ± 0.0 0.4 ± 0.0 3.5 ± 0.6 
16:0 19.4 ± 0.4 15.6 ± 0.5 20.6 ± 1.8 16.3 ± 2.8 
16:1n-7 0.9 ± 0.1 1.1 ± 0.1 1.2 ± 0.2 ND 
16:2 0.4 ± 0.0 1.1 ± 0.0 1.2 ± 0.6 1.7 ± 0.1 
16:3 0.2 ± 0.0 0.2 ± 0.0 0.2 ± 0.0 ND 
18:0 7.6 ± 0.1 10.3 ± 0.7 6.1 ± 3.0 4.8 ± 1.0 
18:1 17.8 ± 0.1 25.9 ± 1.9 10.2 ± 1.0 12.3 ± 3.8 
18:2n-6 2.8 ± 0.1 4.3 ± 0.2 1.5 ± 0.3 2.8 ± 0.6 
18:3n-3 11.2 ± 0.5 16.5 ± 0.5 6.6 ± 1.5 9.1 ± 1.3 
18:4n-3 2.0 ± 0.1 3.0 ± 0.2 1.1 ± 0.2 1.3 ± 0.2 
20:0 0.2 ± 0.0 0.2 ± 0.0 3.9 ± 0.4 2.1 ± 0.1 
20:1n-9 2.4 ± 0.0 1.5 ± 0.1 ND ND 
20:4n-6 1.8 ± 0.1 1.8 ± 0.1 1.8 ± 0.3 2.4 ± 0.1 
20:3n-3 0.4 ± 0.0 0.6 ± 0.1 0.2 ± 0.0 ND 
20:4n-3 0.2 ± 0.0 0.2 ± 0.0 0.2 ± 0.0 ND 
20:5n-3 12.6 ± 0.4 10.2 ± 0.7 14.7 ± 2.8 18.3 ± 1.8 
22:0 0.4 ± 0.0 0.8 ± 0.2 ND ND 
22:1n-11 0.2 ± 0.1 0.4 ± 0.1 0.1 ± 0.0 ND 
22:5n-3 0.2 ± 0.0 0.0 ± 0.0 0.3 ± 0.10 ND 
22:6n-3 13.1 ± 0.3 1.9 ± 0.1 22.2 ± 4.6 26.0 ± 2.3 
ND, not detected. 
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Table 4. Selected fatty acid content (percentage of total fatty acids) of total lipids, polar 

lipids (PL) and neutral lipids (NL) fractions from unenriched Artemia metanauplii. NL 

include two distinct fractions, one corresponding to triacylglycerides (TAG) and another 

to the combined fraction (CF) of monoacylglycerides, diacylglycerides and free fatty 

acids.  

 
 Total lipids PL NL 

   TAG CF 
14:0 1.7 0.3 1.7  
15:0 0.7 0.3 7.1  
16:0 9.4 9.9 13.5 27.8 
16:1n-7 1.0 1.2 3.6  
16:2 0.1 1.1 0.8  
16:3 0.4 0.4 ND  
18:0 9.8 10.6 5.2 18.4 
18:1 29.9 32.6 16.9 33.7 
18:2n-6 3.0 3.2 4.6  
18:3n-3 13.4 14.2 18.9 20.1 
18:4n-3 4.8 5.2 2.6  
20:0 0.2 0.1 2.9  
20:1n-9 1.1 1.1 ND  
20:4n-6 1.0 1.0 ND  
20:3n-3 0.7 0.7 0.8  
20:4n-3 0.5 0.4 ND  
20:5n-3 7.0 7.4 1.4  
22:0 0.9 0.8 ND  
22:1n-11 ND 0.1 ND  
22:5n-3 ND ND ND  
22:6n-3 ND ND ND  
ND, not detected. 


