486 research outputs found

    Observation of an Excited Bc+ State

    Get PDF
    Using pp collision data corresponding to an integrated luminosity of 8.5 fb-1 recorded by the LHCb experiment at center-of-mass energies of s=7, 8, and 13 TeV, the observation of an excited Bc+ state in the Bc+π+π- invariant-mass spectrum is reported. The observed peak has a mass of 6841.2±0.6(stat)±0.1(syst)±0.8(Bc+) MeV/c2, where the last uncertainty is due to the limited knowledge of the Bc+ mass. It is consistent with expectations of the Bc∗(2S31)+ state reconstructed without the low-energy photon from the Bc∗(1S31)+→Bc+Îł decay following Bc∗(2S31)+→Bc∗(1S31)+π+π-. A second state is seen with a global (local) statistical significance of 2.2σ (3.2σ) and a mass of 6872.1±1.3(stat)±0.1(syst)±0.8(Bc+) MeV/c2, and is consistent with the Bc(2S10)+ state. These mass measurements are the most precise to date

    Study of charmonium production in b -hadron decays and first evidence for the decay Bs0

    Get PDF
    Using decays to φ-meson pairs, the inclusive production of charmonium states in b-hadron decays is studied with pp collision data corresponding to an integrated luminosity of 3.0 fb−1, collected by the LHCb experiment at centre-of-mass energies of 7 and 8 TeV. Denoting byBC ≡ B(b → C X) × B(C → φφ) the inclusive branching fraction of a b hadron to a charmonium state C that decays into a pair of φ mesons, ratios RC1C2 ≡ BC1 /BC2 are determined as Rχc0ηc(1S) = 0.147 ± 0.023 ± 0.011, Rχc1ηc(1S) =0.073 ± 0.016 ± 0.006, Rχc2ηc(1S) = 0.081 ± 0.013 ± 0.005,Rχc1 χc0 = 0.50 ± 0.11 ± 0.01, Rχc2 χc0 = 0.56 ± 0.10 ± 0.01and Rηc(2S)ηc(1S) = 0.040 ± 0.011 ± 0.004. Here and below the first uncertainties are statistical and the second systematic.Upper limits at 90% confidence level for the inclusive production of X(3872), X(3915) and χc2(2P) states are obtained as RX(3872)χc1 < 0.34, RX(3915)χc0 < 0.12 andRχc2(2P)χc2 < 0.16. Differential cross-sections as a function of transverse momentum are measured for the ηc(1S) andχc states. The branching fraction of the decay B0s → φφφ is measured for the first time, B(B0s → φφφ) = (2.15±0.54±0.28±0.21B)×10−6. Here the third uncertainty is due to the branching fraction of the decay B0s → φφ, which is used for normalization. No evidence for intermediate resonances is seen. A preferentially transverse φ polarization is observed.The measurements allow the determination of the ratio of the branching fractions for the ηc(1S) decays to φφ and p p asB(ηc(1S)→ φφ)/B(ηc(1S)→ p p) = 1.79 ± 0.14 ± 0.32

    Bose-Einstein correlations of same-sign charged pions in the forward region in pp collisions at √s=7 TeV

    Get PDF
    Bose-Einstein correlations of same-sign charged pions, produced in protonproton collisions at a 7 TeV centre-of-mass energy, are studied using a data sample collected by the LHCb experiment. The signature for Bose-Einstein correlations is observed in the form of an enhancement of pairs of like-sign charged pions with small four-momentum difference squared. The charged-particle multiplicity dependence of the Bose-Einstein correlation parameters describing the correlation strength and the size of the emitting source is investigated, determining both the correlation radius and the chaoticity parameter. The measured correlation radius is found to increase as a function of increasing charged-particle multiplicity, while the chaoticity parameter is seen to decreas

    Measurement of the inelastic pp cross-section at a centre-of-mass energy of 13TeV

    Get PDF
    The cross-section for inelastic proton-proton collisions at a centre-of-mass energy of 13TeV is measured with the LHCb detector. The fiducial cross-section for inelastic interactions producing at least one prompt long-lived charged particle with momentum p &gt; 2 GeV/c in the pseudorapidity range 2 &lt; η &lt; 5 is determined to be ϭ acc = 62:2 ± 0:2 ± 2:5mb. The first uncertainty is the intrinsic systematic uncertainty of the measurement, the second is due to the uncertainty on the integrated luminosity. The statistical uncertainty is negligible. Extrapolation to full phase space yields the total inelastic proton-proton cross-section ϭ inel = 75:4 ± 3:0 ± 4:5mb, where the first uncertainty is experimental and the second due to the extrapolation. An updated value of the inelastic cross-section at a centre-of-mass energy of 7TeV is also reported

    Updated Determination of D⁰–D¯⁰Mixing and CP Violation Parameters with D⁰→Kâșπ⁻ Decays

    Get PDF
    We report measurements of charm-mixing parameters based on the decay-time-dependent ratio of D⁰→Kâșπ⁻ to D⁰→K⁻πâș rates. The analysis uses a data sample of proton-proton collisions corresponding to an integrated luminosity of 5.0  fb⁻Âč recorded by the LHCb experiment from 2011 through 2016. Assuming charge-parity (CP) symmetry, the mixing parameters are determined to be xâ€ČÂČ=(3.9±2.7)×10⁻⁔, yâ€Č=(5.28±0.52)×10⁻³, and R[subscript D]=(3.454±0.031)×10⁻³. Without this assumption, the measurement is performed separately for D⁰ and D[over ÂŻ]⁰ mesons, yielding a direct CP-violating asymmetry A[subscript D]=(-0.1±9.1)×10⁻³, and magnitude of the ratio of mixing parameters 1.00<|q/p|<1.35 at the 68.3% confidence level. All results include statistical and systematic uncertainties and improve significantly upon previous single-measurement determinations. No evidence for CP violation in charm mixing is observed

    Measurement of CP observables in B± → D(⁎)K± and B± → D(⁎)π± decays

    Get PDF
    Measurements of CP observables in B ± →D (⁎) K ± and B ± →D (⁎) π ± decays are presented, where D (⁎) indicates a neutral D or D ⁎ meson that is an admixture of D (⁎)0 and DÂŻ (⁎)0 states. Decays of the D ⁎ meson to the Dπ 0 and DÎł final states are partially reconstructed without inclusion of the neutral pion or photon, resulting in distinctive shapes in the B candidate invariant mass distribution. Decays of the D meson are fully reconstructed in the K ± π ∓ , K + K − and π + π − final states. The analysis uses a sample of charged B mesons produced in pp collisions collected by the LHCb experiment, corresponding to an integrated luminosity of 2.0, 1.0 and 2.0 fb −1 taken at centre-of-mass energies of s=7, 8 and 13 TeV, respectively. The study of B ± →D ⁎ K ± and B ± →D ⁎ π ± decays using a partial reconstruction method is the first of its kind, while the measurement of B ± →DK ± and B ± →Dπ ± decays is an update of previous LHCb measurements. The B ± →DK ± results are the most precise to date

    Observation of D⁰ Meson Decays to Πâșπ⁻ΌâșΌ⁻ and KâșK⁻ΌâșΌ⁻ Final States

    Get PDF
    The first observation of the D⁰→πâșπ⁻ΌâșΌ⁻ and D⁰→KâșK⁻ΌâșΌ⁻ decays is reported using a sample of proton-proton collisions collected by LHCb at a center-of-mass energy of 8 TeV, and corresponding to 2  fb⁻Âč of integrated luminosity. The corresponding branching fractions are measured using as normalization the decay D⁰→K⁻πâș[ÎŒâșΌ⁻][subscript ρ⁰/ω], where the two muons are consistent with coming from the decay of a ρ⁰ or ω meson. The results are B(D⁰→πâșπ⁻ΌâșΌ⁻)=(9.64±0.48±0.51±0.97)×10⁻⁷ and B(D⁰→KâșK⁻ΌâșΌ⁻)=(1.54±0.27±0.09±0.16)×10⁻⁷, where the uncertainties are statistical, systematic, and due to the limited knowledge of the normalization branching fraction. The dependence of the branching fraction on the dimuon mass is also investigated

    Measurement of b hadron fractions in 13 TeV pp collisions

    Get PDF
    The production fractions of ÂŻ B 0 s and Λ 0 b hadrons, normalized to the sum of B − and ÂŻ B 0 fractions, are measured in 13 TeV p p collisions using data collected by the LHCb experiment, corresponding to an integrated luminosity of 1.67     fb − 1 . These ratios, averaged over the b hadron transverse momenta from 4 to 25 GeV and pseudorapidity from 2 to 5, are 0.122 ± 0.006 for ÂŻ B 0 s , and 0.259 ± 0.018 for Λ 0 b , where the uncertainties arise from both statistical and systematic sources. The Λ 0 b ratio depends strongly on transverse momentum, while the ÂŻ B 0 s ratio shows a mild dependence. Neither ratio shows variations with pseudorapidity. The measurements are made using semileptonic decays to minimize theoretical uncertainties. In addition, the ratio of D + to D 0 mesons produced in the sum of ÂŻ B 0 and B − semileptonic decays is determined as 0.359 ± 0.006 ± 0.009 , where the uncertainties are statistical and systematic

    Observation of B(s)0→J/ψppÂŻ decays and precision measurements of the B(s)0 masses

    Get PDF
    The first observation of the decays B 0 ( s ) → J / ψ p ÂŻ p is reported, using proton-proton collision data corresponding to an integrated luminosity of 5.2     fb − 1 , collected with the LHCb detector. These decays are suppressed due to limited available phase space, as well as due to Okubo-Zweig-Iizuka or Cabibbo suppression. The measured branching fractions are B ( B 0 → J / ψ p ÂŻ p ) = [ 4.51 ± 0.40 ( stat ) ± 0.44 ( syst ) ] × 10 − 7 , B ( B 0 s → J / ψ p ÂŻ p ) = [ 3.58 ± 0.19 ( stat ) ± 0.39 ( syst ) ] × 10 − 6 . For the B 0 s meson, the result is much higher than the expected value of O ( 10 − 9 ) . The small available phase space in these decays also allows for the most precise single measurement of both the B 0 mass as 5279.74 ± 0.30 ( stat ) ± 0.10 ( syst )     MeV and the B 0 s mass as 5366.85 ± 0.19 ( stat ) ± 0.13 ( syst )     MeV

    Measurement of the Charm-Mixing Parameter yCP

    Get PDF
    A measurement of the charm-mixing parameter y_{CP} using D^{0}→K^{+}K^{-}, D^{0}→π^{+}π^{-}, and D^{0}→K^{-}π^{+} decays is reported. The D^{0} mesons are required to originate from semimuonic decays of B^{-} and B[over ÂŻ]^{0} mesons. These decays are partially reconstructed in a data set of proton-proton collisions at center-of-mass energies of 7 and 8 TeV collected with the LHCb experiment and corresponding to an integrated luminosity of 3  fb^{-1}. The y_{CP} parameter is measured to be (0.57±0.13(stat)±0.09(syst))%, in agreement with, and as precise as, the current world-average value
    • 

    corecore