13 research outputs found

    Role of a conserved arginine residue during catalysis in serine palmitoyltransferase

    Get PDF
    AbstractAll sphingolipid-producing organisms require the pyridoxal 5â€Č-phosphate (PLP)-dependent serine palmitoyltransferase (SPT) to catalyse the first reaction on the de novo sphingolipid biosynthetic pathway. SPT is a member of the alpha oxoamine synthase (AOS) family that catalyses a Claisen-like condensation of palmitoyl-CoA and l-serine to form 3-ketodihydrosphingosine (KDS). Protein sequence alignment across various species reveals an arginine residue, not involved in PLP binding, to be strictly conserved in all prokaryotic SPTs, the lcb2 subunits of eukaryotic SPTs and all members of the AOS family. Here we use UV–vis spectroscopy and site-directed mutagenesis, in combination with a substrate analogue, to show that the equivalent residue (R370) in the SPT from Sphingomonas wittichii is required to form the key PLP:l-serine quinonoid intermediate that condenses with palmitoyl-CoA and thus plays an essential role enzyme catalysis.Structured summary of protein interactionsSPT binds to SPT by molecular sieving (View interaction

    Phosphonolipids as non-viral vectors for gene therapy

    No full text
    International audienceSeveral phosphonates with two fatty chains and different polar heads were synthesized and evaluated for their potential to transfer DNA into epithelial (COS-7) and hematopoietic (K562) cell lines, and compared to commercially available references. In both cases, ammonium-phosphonates were particularly efficient
    corecore