69 research outputs found

    Exploiting Ultrasound Harmonics

    Get PDF
    Ultrasound imaging is an inexpensive method which provides an accurate diagnosis tool. This thesis provides elements to characterise the acoustic pressure generated by ultrasound transducers as well as signal processing method that could improve modern echography. The first measurement method to assess transducers characteristics consists in deducing the absolute amplitude of the acoustic pressure from a distortion measurement. Using this method, the acoustic pressure was determined within 20% of the calibrated hydrophone measurement. Another measurement method of harmonic acoustic beams was developed based on Schlieren photography. For some patients, ultrasound imaging presents difficulties. Super harmonic imaging (SHI) improves further the compromise between penetration and resolution. A description of the strategy to fulfil the bandwidth requirements of such an exigent method is provided. The detailed piezomaterial selection is depicted as well as the optimization of the array configuration for transthoracic and abdominal applications. Furthermore, two signal processing techniques are described to improve the SHI point spread function. The first technique consists in a dual pulse method and second uses chirp compression. Both methods permit to recover a good axial resolution. Those two methods present different performances. Finally, for contrast echography, two methods are described in order to further enhance the contrast to tissue ratio. The first one uses source pre-biasing technique. Improvement of contrast to tissue ratio (CTR) yields to 7.4 dB. The second technique consists in applying a power modulation scheme on a filtered population of bubbles. An improveme

    Lower extremity muscle pathology in myotonic dystrophy type 1 assessed by quantitative MRI

    Get PDF
    Objective: To determine the value of quantitative MRI in providing imaging biomarkers for disease in 20 different upper and lower leg muscles of patients with myotonic dystrophy type 1 (DM1). Methods: We acquired images covering these muscles in 33 genetically and clinically well-characterized patients with DM1 and 10 unaffected controls. MRIs were recorded with a Dixon method to determine muscle fat fraction, muscle volume, and contractile muscle volume, and a multi-echo spin-echo sequence was used to determine T2 water relaxation time (T2water), reflecting putative edema. Results: Muscles in patients with DM1 had higher fat fractions than muscles of controls (15.6 ± 11.1% vs 3.7 ± 1.5%). In addition, patients had smaller muscle volumes (902 ± 232 vs 1,097 ± 251 cm3), smaller contractile muscle volumes (779 ± 247 vs 1,054 ± 246 cm3), and increased T2water (33.4 ± 1.0 vs 31.9 ± 0.6 milliseconds), indicating atrophy and edema, respectively. Lower leg muscles were affected most frequently, especially the gastrocnemius medialis and soleus. Distribution of fat content per muscle indicated gradual fat infiltration in DM1. Between-patient variation in fat fraction was explained by age (≈45%), and another ≈14% was explained by estimated progenitor CTG repeat length (r2 = 0.485) and somatic instability (r2 = 0.590). Fat fraction correlated with the 6-minute walk test (r = −0.553) and muscular impairment rating scale (r = 0.537) and revealed subclinical muscle involvement. Conclusion: This cross-sectional quantitative MRI study of 20 different lower extremity muscles in patients with DM1 revealed abnormal values for muscle fat fraction, volume, and T2water, which therefore may serve as objective biomarkers to assess disease state of skeletal muscles in these patients

    Influence of reimbursement policies on phlebological surgical practice in Belgium between 2007 and 2017

    Get PDF
    BACKGROUND: To date, it is unclear how treatment of patients with chronic venous disease (CVD) is influenced by national reimbursement systems. In Belgium, catheters or fibers used for endovenous thermal ablation (EVTA) are reimbursed only once in a lifetime. The potential impact of the Belgian public health insurance reimbursement policy on surgical practice in phlebology needs to be investigated. METHODS: Billing data available from the Belgian National Institute for Health and Disability Insurance (NIHDI) were used for analyzing the distribution of specific surgical procedures for treating varicose veins and their relative use from 2007 to 2017. The potential influence of age, sex, social status and geographical origin of insured patients on surgical practice in Belgium were studied. RESULTS: The annual intervention rate was 343 per 100,000 insured individuals for 2017 with a slight annual increase over the period 2007-2017 (+ 0.83% per year). Patients with limited resources, benefiting from a preferential reimbursement system, had a significantly lower intervention rate than those having the usual system (P<0.001). There was a large geographical variation in the use of care, ranging from 172 to 549 per 100.000 insured in 2017. The number of classic surgical procedures decreased (-6.17% per year) in the period 2015-2017) while EVTA, newly reimbursed in Belgium since 2012, increased during the same period (+ 3.6% per year). This evolution was more pronounced in the north (Flanders) than in the south (Wallonia) of the country. Bilateral treatment increased considerably from 2012 and stabilized at 33% of all surgical interventions in 2016 and 2017. CONCLUSIONS: Available data of the NIHDI in Belgium highlight remarkable differences in the use of care for CVD, depending on social status and geographical origin of insured patients. The introduction of EVTA techniques has been adopted more rapidly in the north of the country and has led to an increased percentage of bilateral procedures

    Controlled transdermal release of antioxidant ferulate by a porous Sc(III) MOF

    Get PDF
    The Sc(III) MOF-type MFM-300(Sc) is demonstrated in this study to be stable under physiological conditions (PBS), biocompatible (to human skin cells), and an efficient drug carrier for the long-term controlled release (through human skin) of antioxidant ferulate. MFM-300(Sc) also preserves the antioxidant pharmacological effects of ferulate while enhancing the bio-preservation of dermal skin fibroblasts, during the delivery process. These discoveries pave the way toward the extended use of Sc(III)-based MOFs as drug delivery systems (DDSs)

    Interplay between edge states and simple bulk defects in graphene nanoribbons

    Full text link
    We study the interplay between the edge states and a single impurity in a zigzag graphene nanoribbon. We use tight-binding exact diagonalization techniques, as well as density functional theory calculations to obtain the eigenvalue spectrum, the eigenfunctions, as well the dependence of the local density of states (LDOS) on energy and position. We note that roughly half of the unperturbed eigenstates in the spectrum of the finite-size ribbon hybridize with the impurity state, and the corresponding eigenvalues are shifted with respect to their unperturbed values. The maximum shift and hybridization occur for a state whose energy is inverse proportional to the impurity potential; this energy is that of the impurity peak in the DOS spectrum. We find that the interference between the impurity and the edge gives rise to peculiar modifications of the LDOS of the nanoribbon, in particular to oscillations of the edge LDOS. These effects depend on the size of the system, and decay with the distance between the edge and the impurity.Comment: 10 pages, 15 figures, revtex

    Correction to: Eight years after an international workshop on myotonic dystrophy patient registries: Case study of a global collaboration for a rare disease (Orphanet Journal of Rare Diseases (2018) 13 (155) DOI: 10.1186/s13023-018-0889-0)

    Get PDF
    The original version of this article [1] unfortunately included an error to an author\u27s name. Author Jordi Díaz-Manera was erroneously presented as Jorge Alberto Diaz Manera. The correct author name has been included in the author list of this Correction article. For citation purposes the author\u27s given name is Jordi and family name Diaz-Manera. Therefore, the correct citation of the author\u27s details is: Diaz-Manera J

    Large subglacial source of mercury from the southwestern margin of the Greenland Ice Sheet

    Get PDF
    The Greenland Ice Sheet is currently not accounted for in Arctic mercury budgets, despite large and increasing annual runoff to the ocean and the socio-economic concerns of high mercury levels in Arctic organisms. Here we present concentrations of mercury in meltwaters from three glacial catchments on the southwestern margin of the Greenland Ice Sheet and evaluate the export of mercury to downstream fjords based on samples collected during summer ablation seasons. We show that concentrations of dissolved mercury are among the highest recorded in natural waters and mercury yields from these glacial catchments (521–3,300 mmol km−2 year−1) are two orders of magnitude higher than from Arctic rivers (4–20 mmol km−2 year−1). Fluxes of dissolved mercury from the southwestern region of Greenland are estimated to be globally significant (15.4–212 kmol year−1), accounting for about 10% of the estimated global riverine flux, and include export of bioaccumulating methylmercury (0.31–1.97 kmol year−1). High dissolved mercury concentrations (~20 pM inorganic mercury and ~2 pM methylmercury) were found to persist across salinity gradients of fjords. Mean particulate mercury concentrations were among the highest recorded in the literature (~51,000 pM), and dissolved mercury concentrations in runoff exceed reported surface snow and ice values. These results suggest a geological source of mercury at the ice sheet bed. The high concentrations of mercury and its large export to the downstream fjords have important implications for Arctic ecosystems, highlighting an urgent need to better understand mercury dynamics in ice sheet runoff under global warming

    State of the climate in 2018

    Get PDF
    In 2018, the dominant greenhouse gases released into Earth’s atmosphere—carbon dioxide, methane, and nitrous oxide—continued their increase. The annual global average carbon dioxide concentration at Earth’s surface was 407.4 ± 0.1 ppm, the highest in the modern instrumental record and in ice core records dating back 800 000 years. Combined, greenhouse gases and several halogenated gases contribute just over 3 W m−2 to radiative forcing and represent a nearly 43% increase since 1990. Carbon dioxide is responsible for about 65% of this radiative forcing. With a weak La Niña in early 2018 transitioning to a weak El Niño by the year’s end, the global surface (land and ocean) temperature was the fourth highest on record, with only 2015 through 2017 being warmer. Several European countries reported record high annual temperatures. There were also more high, and fewer low, temperature extremes than in nearly all of the 68-year extremes record. Madagascar recorded a record daily temperature of 40.5°C in Morondava in March, while South Korea set its record high of 41.0°C in August in Hongcheon. Nawabshah, Pakistan, recorded its highest temperature of 50.2°C, which may be a new daily world record for April. Globally, the annual lower troposphere temperature was third to seventh highest, depending on the dataset analyzed. The lower stratospheric temperature was approximately fifth lowest. The 2018 Arctic land surface temperature was 1.2°C above the 1981–2010 average, tying for third highest in the 118-year record, following 2016 and 2017. June’s Arctic snow cover extent was almost half of what it was 35 years ago. Across Greenland, however, regional summer temperatures were generally below or near average. Additionally, a satellite survey of 47 glaciers in Greenland indicated a net increase in area for the first time since records began in 1999. Increasing permafrost temperatures were reported at most observation sites in the Arctic, with the overall increase of 0.1°–0.2°C between 2017 and 2018 being comparable to the highest rate of warming ever observed in the region. On 17 March, Arctic sea ice extent marked the second smallest annual maximum in the 38-year record, larger than only 2017. The minimum extent in 2018 was reached on 19 September and again on 23 September, tying 2008 and 2010 for the sixth lowest extent on record. The 23 September date tied 1997 as the latest sea ice minimum date on record. First-year ice now dominates the ice cover, comprising 77% of the March 2018 ice pack compared to 55% during the 1980s. Because thinner, younger ice is more vulnerable to melting out in summer, this shift in sea ice age has contributed to the decreasing trend in minimum ice extent. Regionally, Bering Sea ice extent was at record lows for almost the entire 2017/18 ice season. For the Antarctic continent as a whole, 2018 was warmer than average. On the highest points of the Antarctic Plateau, the automatic weather station Relay (74°S) broke or tied six monthly temperature records throughout the year, with August breaking its record by nearly 8°C. However, cool conditions in the western Bellingshausen Sea and Amundsen Sea sector contributed to a low melt season overall for 2017/18. High SSTs contributed to low summer sea ice extent in the Ross and Weddell Seas in 2018, underpinning the second lowest Antarctic summer minimum sea ice extent on record. Despite conducive conditions for its formation, the ozone hole at its maximum extent in September was near the 2000–18 mean, likely due to an ongoing slow decline in stratospheric chlorine monoxide concentration. Across the oceans, globally averaged SST decreased slightly since the record El Niño year of 2016 but was still far above the climatological mean. On average, SST is increasing at a rate of 0.10° ± 0.01°C decade−1 since 1950. The warming appeared largest in the tropical Indian Ocean and smallest in the North Pacific. The deeper ocean continues to warm year after year. For the seventh consecutive year, global annual mean sea level became the highest in the 26-year record, rising to 81 mm above the 1993 average. As anticipated in a warming climate, the hydrological cycle over the ocean is accelerating: dry regions are becoming drier and wet regions rainier. Closer to the equator, 95 named tropical storms were observed during 2018, well above the 1981–2010 average of 82. Eleven tropical cyclones reached Saffir–Simpson scale Category 5 intensity. North Atlantic Major Hurricane Michael’s landfall intensity of 140 kt was the fourth strongest for any continental U.S. hurricane landfall in the 168-year record. Michael caused more than 30 fatalities and 25billion(U.S.dollars)indamages.InthewesternNorthPacific,SuperTyphoonMangkhutledto160fatalitiesand25 billion (U.S. dollars) in damages. In the western North Pacific, Super Typhoon Mangkhut led to 160 fatalities and 6 billion (U.S. dollars) in damages across the Philippines, Hong Kong, Macau, mainland China, Guam, and the Northern Mariana Islands. Tropical Storm Son-Tinh was responsible for 170 fatalities in Vietnam and Laos. Nearly all the islands of Micronesia experienced at least moderate impacts from various tropical cyclones. Across land, many areas around the globe received copious precipitation, notable at different time scales. Rodrigues and Réunion Island near southern Africa each reported their third wettest year on record. In Hawaii, 1262 mm precipitation at Waipā Gardens (Kauai) on 14–15 April set a new U.S. record for 24-h precipitation. In Brazil, the city of Belo Horizonte received nearly 75 mm of rain in just 20 minutes, nearly half its monthly average. Globally, fire activity during 2018 was the lowest since the start of the record in 1997, with a combined burned area of about 500 million hectares. This reinforced the long-term downward trend in fire emissions driven by changes in land use in frequently burning savannas. However, wildfires burned 3.5 million hectares across the United States, well above the 2000–10 average of 2.7 million hectares. Combined, U.S. wildfire damages for the 2017 and 2018 wildfire seasons exceeded $40 billion (U.S. dollars)

    EU-AIMS Longitudinal European Autism Project (LEAP) the autism twin cohort

    Get PDF
    EU-AIMS is the largest European research program aiming to identify stratification biomarkers and novel interventions for autism spectrum disorder (ASD). Within the program, the Longitudinal European Autism Project (LEAP) has recruited and comprehensively phenotyped a rare sample of 76 monozygotic and dizygotic twins, discordant, or concordant for ASD plus 30 typically developing twins. The aim of this letter is to complete previous descriptions of the LEAP case-control sample, clinically characterize, and investigate the suitability of the sample for ASD twin-control analyses purposes and share some 'lessons learnt.' Among the twins, a diagnosis of ASD is associated with increased symptom levels of ADHD, higher rates of intellectual disability, and lower family income. For the future, we conclude that the LEAP twin cohort offers multiple options for analyses of genetic and shared and non-shared environmental factors to generate new hypotheses for the larger cohort of LEAP singletons, but particularly cross-validate and refine evidence from it

    Undiagnosed Phenylketonuria Can Exist Everywhere: Results From an International Survey

    Full text link
    peer reviewedMany countries do not have a newborn screening (NBS) program, and immigrants from such countries are at risk for late diagnosis of phenylketonuria (PKU). In this international survey, 52 of 259 patients (20%) with late diagnosed PKU were immigrants, and 145 of the 259 (55%) were born before NBS or in a location without NBS. © 2021 The Author
    corecore