496 research outputs found

    Optical performance of the JWST MIRI flight model: characterization of the point spread function at high-resolution

    Get PDF
    The Mid Infra Red Instrument (MIRI) is one of the four instruments onboard the James Webb Space Telescope (JWST), providing imaging, coronagraphy and spectroscopy over the 5-28 microns band. To verify the optical performance of the instrument, extensive tests were performed at CEA on the flight model (FM) of the Mid-InfraRed IMager (MIRIM) at cryogenic temperatures and in the infrared. This paper reports on the point spread function (PSF) measurements at 5.6 microns, the shortest operating wavelength for imaging. At 5.6 microns the PSF is not Nyquist-sampled, so we use am original technique that combines a microscanning measurement strategy with a deconvolution algorithm to obtain an over-resolved MIRIM PSF. The microscanning consists in a sub-pixel scan of a point source on the focal plane. A data inversion method is used to reconstruct PSF images that are over-resolved by a factor of 7 compared to the native resolution of MIRI. We show that the FWHM of the high-resolution PSFs were 5-10% wider than that obtained with Zemax simulations. The main cause was identified as an out-of-specification tilt of the M4 mirror. After correction, two additional test campaigns were carried out, and we show that the shape of the PSF is conform to expectations. The FWHM of the PSFs are 0.18-0.20 arcsec, in agreement with simulations. 56.1-59.2% of the total encircled energy (normalized to a 5 arcsec radius) is contained within the first dark Airy ring, over the whole field of view. At longer wavelengths (7.7-25.5 microns), this percentage is 57-68%. MIRIM is thus compliant with the optical quality requirements. This characterization of the MIRIM PSF, as well as the deconvolution method presented here, are of particular importance, not only for the verification of the optical quality and the MIRI calibration, but also for scientific applications.Comment: 13 pages, submitted to SPIE Proceedings vol. 7731, Space Telescopes and Instrumentation 2010: Optical, Infrared, and Millimeter Wav

    The Mid-Infrared Instrument for the James Webb Space Telescope, III: MIRIM, The MIRI Imager

    Get PDF
    In this article, we describe the MIRI Imager module (MIRIM), which provides broad-band imaging in the 5 - 27 microns wavelength range for the James Webb Space Telescope. The imager has a 0"11 pixel scale and a total unobstructed view of 74"x113". The remainder of its nominal 113"x113" field is occupied by the coronagraphs and the low resolution spectrometer. We present the instrument optical and mechanical design. We show that the test data, as measured during the test campaigns undertaken at CEA-Saclay, at the Rutherford Appleton Laboratory, and at the NASA Goddard Space Flight Center, indicate that the instrument complies with its design requirements and goals. We also discuss the operational requirements (multiple dithers and exposures) needed for optimal scientific utilization of the MIRIM.Comment: 29 pages, 9 figure

    3-D Ultrastructure of O. tauri: Electron Cryotomography of an Entire Eukaryotic Cell

    Get PDF
    The hallmark of eukaryotic cells is their segregation of key biological functions into discrete, membrane-bound organelles. Creating accurate models of their ultrastructural complexity has been difficult in part because of the limited resolution of light microscopy and the artifact-prone nature of conventional electron microscopy. Here we explored the potential of the emerging technology electron cryotomography to produce three-dimensional images of an entire eukaryotic cell in a near-native state. Ostreococcus tauri was chosen as the specimen because as a unicellular picoplankton with just one copy of each organelle, it is the smallest known eukaryote and was therefore likely to yield the highest resolution images. Whole cells were imaged at various stages of the cell cycle, yielding 3-D reconstructions of complete chloroplasts, mitochondria, endoplasmic reticula, Golgi bodies, peroxisomes, microtubules, and putative ribosome distributions in-situ. Surprisingly, the nucleus was seen to open long before mitosis, and while one microtubule (or two in some predivisional cells) was consistently present, no mitotic spindle was ever observed, prompting speculation that a single microtubule might be sufficient to segregate multiple chromosomes

    Very early MRI responses to therapy as a predictor of later radiographic progression in early rheumatoid arthritis

    Get PDF
    Background: The objective of this study was to evaluate early changes in magnetic resonance imaging (MRI) and clinical disease activity measures as predictors of later structural progression in early rheumatoid arthritis (RA). Methods: This was a post hoc analysis of data pooled across treatments from a three-arm (tofacitinib monotherapy, tofacitinib with methotrexate [MTX], or MTX monotherapy) trial of MTX-naïve patients with early, active RA. Synovitis, osteitis and erosions were assessed with the Outcome Measures in Rheumatology (OMERACT) RA MRI scoring system (RAMRIS) and RAMRIQ (automated quantitative RA MRI assessment system; automated RAMRIS) at months 0, 1, 3, 6 and 12. Radiographs were assessed at months 0, 6 and 12, and clinical endpoints were assessed at all timepoints. Univariate and multivariate analyses explored the predictive value of early changes in RAMRIS/RAMRIQ parameters and disease activity measures, with respect to subsequent radiographic progression. Results: Data from 109 patients with a mean RA duration of 0.7 years were included. In univariate analyses, changes in RAMRIS erosions at months 1 and 3 significantly predicted radiographic progression at month 12 (both p <  0.01); changes in RAMRIQ synovitis and osteitis at months 1 and 3 were significant predictors of RAMRIS erosions and radiographic progression at month 12 (all p <  0.01). In subsequent multivariate analyses, RAMRIS erosion change at month 1 (p <  0.05) and RAMRIQ osteitis changes at months 1 and 3 (both p <  0.01) were significant independent predictors of radiographic progression at month 12. Univariate analyses demonstrated that changes in Clinical Disease Activity Index (CDAI) and Disease Activity Score in 28 joints, erythrocyte sedimentation rate (DAS28-4[ESR]) at months 1 and 3 were not predictive of month 12 radiographic progression. Conclusions: MRI changes seen as early as 1 month after RA treatment initiation have the potential to better predict long-term radiographic progression than changes in disease activity measures. Trial registration: ClinicalTrials.gov, NCT01164579

    Observations of the planetary nebula SMP LMC 058 with the JWST MIRI medium resolution spectrometer

    Get PDF
    During the commissioning of JWST, the medium-resolution spectrometer (MRS) on the mid-infrared instrument (MIRI) observed the planetary nebula SMP LMC 058 in the Large Magellanic Cloud. The MRS was designed to provide medium resolution (R = λ/Δλ) 3D spectroscopy in the whole MIRI range. SMP LMC 058 is the only source observed in JWST commissioning that is both spatially and spectrally unresolved by the MRS and is a good test of JWST's capabilities. The new MRS spectra reveal a wealth of emission lines not previously detected in this planetary nebula. From these lines, the spectral resolving power (λ/Δλ) of the MRS is confirmed to be in the range R = 4000-1500, depending on the MRS spectral sub-band. In addition, the spectra confirm that the carbon-rich dust emission is from complex hydrocarbons and SiC grains and that there is little to no time evolution of the SiC dust and emission line strengths over a 17-yr epoch. These commissioning data reveal the great potential of the MIRI MRS for the study of circumstellar and interstellar material.</p

    Nuclear high-ionisation outflow in the Compton-thick AGN NGC6552 as seen by the JWST mid-infrared instrument

    Get PDF
    During the commissioning of the James Webb Space Telescope (JWST), the mid-infrared instrument (MIRI) observed NGC6552 with the MIRI Imager and the medium-resolution spectrograph (MRS). NGC6552 is an active galactic nucleus (AGN) at redshift 0.0266 classified as a Seyfert 2 nucleus in the optical, and Compton-thick AGN in X-rays. This work exemplifies and demonstrates the MRS capabilities to study the mid-infrared (mid-IR) spectra and characterize the physical conditions and kinematics of the ionized and molecular gas in the nuclear regions of nearby galaxies. We obtained the nuclear, circumnuclear, and central mid-IR spectra of NGC6552. They provide the first clear observational evidence for a nuclear outflow in NGC6552. The outflow contributes to 67±\pm7% of the total line flux independent of the ionization potential (27 to 187 eV) and critical densities (104^4 to 4×\times106^{6} cm3^{-3}), showing an average blue-shifted peak velocity of -127±\pm45 kms1^{-1} and an outflow maximal velocity of 698±\pm80 kms1^{-1}. Since the mid-IR photons penetrate dusty regions as efficiently as X-ray keV photons, we interpret these results as the evidence for a highly ionized, non-stratified, AGN-powered, and fast outflowing gas in a low density environment (few 103^{3} cm3^{-3}) located very close (<0.2kpc) to the Compton-thick AGN. Nine pure rotational molecular Hydrogen lines are detected and spectrally resolved, and exhibit symmetric Gaussian profiles, consistent with the galactic rotation, and with no evidence of outflowing H2_{2} material. We detect a warm H2_{2} mass of 1.9±1.1×107M1.9\pm1.1\times10^7 M_{\odot} in the central region (1.8 kpc in diameter) of the galaxy, with almost 30% of that mass in the circum-nuclear region. Line ratios confirm that NGC6552 has a Seyfert nucleus with a black hole mass estimated in the range of 0.6 to 6 million solar masses.Comment: 13 pages, 5 figures, 5 tables, accepted in A&

    Status and Recent Results of the Acoustic Neutrino Detection Test System AMADEUS

    Full text link
    The AMADEUS system is an integral part of the ANTARES neutrino telescope in the Mediterranean Sea. The project aims at the investigation of techniques for acoustic neutrino detection in the deep sea. Installed at a depth of more than 2000m, the acoustic sensors of AMADEUS are based on piezo-ceramics elements for the broad-band recording of signals with frequencies ranging up to 125kHz. AMADEUS was completed in May 2008 and comprises six "acoustic clusters", each one holding six acoustic sensors that are arranged at distances of roughly 1m from each other. The clusters are installed with inter-spacings ranging from 15m to 340m. Acoustic data are continuously acquired and processed at a computer cluster where online filter algorithms are applied to select a high-purity sample of neutrino-like signals. 1.6 TB of data were recorded in 2008 and 3.2 TB in 2009. In order to assess the background of neutrino-like signals in the deep sea, the characteristics of ambient noise and transient signals have been investigated. In this article, the AMADEUS system will be described and recent results will be presented.Comment: 7 pages, 8 figures. Proceedings of ARENA 2010, the 4th International Workshop on Acoustic and Radio EeV Neutrino Detection Activitie

    High CO2 and Silicate Limitation Synergistically Increase the Toxicity of Pseudo-nitzschia fraudulenta

    Get PDF
    Anthropogenic CO2 is progressively acidifying the ocean, but the responses of harmful algal bloom species that produce toxins that can bioaccumulate remain virtually unknown. The neurotoxin domoic acid is produced by the globally-distributed diatom genus Pseudo-nitzschia. This toxin is responsible for amnesic shellfish poisoning, which can result in illness or death in humans and regularly causes mass mortalities of marine mammals and birds. Domoic acid production by Pseudo-nitzschia cells is known to be regulated by nutrient availability, but potential interactions with increasing seawater CO2 concentrations are poorly understood. Here we present experiments measuring domoic acid production by acclimatized cultures of Pseudo-nitzschia fraudulenta that demonstrate a strong synergism between projected future CO2 levels (765 ppm) and silicate-limited growth, which greatly increases cellular toxicity relative to growth under modern atmospheric (360 ppm) or pre-industrial (200 ppm) CO2 conditions. Cellular Si∶C ratios decrease with increasing CO2, in a trend opposite to that seen for domoic acid production. The coastal California upwelling system where this species was isolated currently exhibits rapidly increasing levels of anthropogenic acidification, as well as widespread episodic silicate limitation of diatom growth. Our results suggest that the current ecosystem and human health impacts of toxic Pseudo-nitzschia blooms could be greatly exacerbated by future ocean acidification and ‘carbon fertilization’ of the coastal ocean

    Performance of the First ANTARES Detector Line

    Get PDF
    In this paper we report on the data recorded with the first Antares detector line. The line was deployed on the 14th of February 2006 and was connected to the readout two weeks later. Environmental data for one and a half years of running are shown. Measurements of atmospheric muons from data taken from selected runs during the first six months of operation are presented. Performance figures in terms of time residuals and angular resolution are given. Finally the angular distribution of atmospheric muons is presented and from this the depth profile of the muon intensity is derived.Comment: 14 pages, 9 figure
    corecore