537 research outputs found

    A combination of real-time PCR and high-resolution melting analysis to detect and identify CpGV genotypes involved in type I resistance

    Get PDF
    Cydia pomonella granulovirus, in particular CpGV-M isolate, is used as a biological control against the codling moth (CM), Cydia pomonella. As a result of intensive control over the years, codling moth populations have developed resistance against this isolate. This resistance is now called type I resistance. Isolates, among them, CpGV-R5, have been found that are able to overcome type I resistance. Both CpGV-M and CpGV-R5 are used in orchards to control the codling moth. High resolution melting (HRM) has been adapted to differentiate between CpGV-M and CpGV-R5 isolates. Specific PCR primers have been designed for the CpGV p38 gene, encompassing the variable region responsible for the ability to overcome resistance. Because each amplicon has a specific melting point, it is possible to identify the CpGV-M and CpGV-R5 genotypes and to quantify their relative proportion. This method has been validated using mixtures of occlusion bodies of each isolate at various proportions. Then, the HRM has been used to estimate the proportion of each genotype in infected larvae or in occlusion bodies (OBs) extracted from dead larvae. This method allows a rapid detection of genotype replication and enables the assessment of either success or failure of the infection in field conditions

    Secreted Protein Acidic and Rich in Cysteine Is a Matrix Scavenger Chaperone

    Get PDF
    Secreted Protein Acidic and Rich in Cysteine (SPARC) is one of the major non-structural proteins of the extracellular matrix (ECM) in remodeling tissues. The functional significance of SPARC is emphasized by its origin in the first multicellular organisms and its high degree of evolutionary conservation. Although SPARC has been shown to act as a critical modulator of ECM remodeling with profound effects on tissue physiology and architecture, no plausible molecular mechanism of its action has been proposed. In the present study, we demonstrate that SPARC mediates the disassembly and degradation of ECM networks by functioning as a matricellular chaperone. While it has low affinity to its targets inside the cells where the Ca2+ concentrations are low, high extracellular concentrations of Ca2+ activate binding to multiple ECM proteins, including collagens. We demonstrated that in vitro, this leads to the inhibition of collagen I fibrillogenesis and disassembly of pre-formed collagen I fibrils by SPARC at high Ca2+ concentrations. In cell culture, exogenous SPARC was internalized by the fibroblast cells in a time- and concentration-dependent manner. Pulse-chase assay further revealed that internalized SPARC is quickly released outside the cell, demonstrating that SPARC shuttles between the cell and ECM. Fluorescently labeled collagen I, fibronectin, vitronectin, and laminin were co-internalized with SPARC by fibroblasts, and semi-quantitative Western blot showed that SPARC mediates internalization of collagen I. Using a novel 3-dimentional model of fluorescent ECM networks pre-deposited by live fibroblasts, we demonstrated that degradation of ECM depends on the chaperone activity of SPARC. These results indicate that SPARC may represent a new class of scavenger chaperones, which mediate ECM degradation, remodeling and repair by disassembling ECM networks and shuttling ECM proteins into the cell. Further understanding of this mechanism may provide insight into the pathogenesis of matrix-associated disorders and lead to the novel treatment strategies

    How Anesthetic, Analgesic and Other Non-Surgical Techniques During Cancer Surgery Might Affect Postoperative Oncologic Outcomes:A Summary of Current State of Evidence

    Get PDF
    The question of whether anesthetic, analgesic or other perioperative intervention during cancer resection surgery might influence long-term oncologic outcomes has generated much attention over the past 13 years. A wealth of experimental and observational clinical data have been published, but the results of prospective, randomized clinical trials are awaited. The European Union supports a pan-European network of researchers, clinicians and industry partners engaged in this question (COST Action 15204: Euro-Periscope). In this narrative review, members of the Euro-Periscope network briefly summarize the current state of evidence pertaining to the potential effects of the most commonly deployed anesthetic and analgesic techniques and other non-surgical interventions during cancer resection surgery on tumor recurrence or metastasis

    Altimetry for the future: Building on 25 years of progress

    Get PDF
    In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology. The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the ‘‘Green” Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instruments’ development and satellite missions’ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    What is the quality of economic evaluations of non-drug therapies? A systematic review and critical appraisal of economic evaluations of radiotherapy for cancer. Applied Health Economics and Health Policy.

    Get PDF
    Background Breast, cervical and colorectal cancers are the three most frequent cancers in women, while lung, prostate and colorectal cancers are the most frequent in men. Much attention has been given to the economic evaluation of pharmaceuticals for treatment of cancer by the National Institute for Health and Care Excellence (NICE) in the UK and similar authorities internationally, while economic analysis developed for other types of anti-cancer interventions, including radiotherapy and surgery, are less common. Objectives Our objective was to review methods used in published cost-effectiveness studies evaluating radiotherapy for breast, cervical, colorectal, head and neck and prostate cancer, and to compare the economic evaluation methods applied with those defined in the guidelines used by the NICE technology appraisal programme. Methods A systematic search of seven databases (MEDLINE, EMBASE, CDSR, NHSEED, HTA, DARE, EconLit) as well as research registers, the NICE website and conference proceedings was conducted in July 2012. Only economic evaluations of radiotherapy interventions in individuals diagnosed with cancer that included quality-adjusted life-years (QALYs) or life-years (LYs) were included. Included studies were appraised on the basis of satisfying essential, preferred and UK-specific methods requirements, building on the NICE Reference Case for economic evaluations and on other methods guidelines. Results A total of 29 studies satisfied the inclusion criteria (breast 14, colorectal 2, prostate 10, cervical 0, head and neck 3). Only two studies were conducted in the UK (13 in the USA). Among essential methods criteria, the main issue was that only three (10 %) of the studies used clinical-effectiveness estimates identified through systematic review of the literature. Similarly, only eight (28 %) studies sourced health-related quality-of-life data directly from patients with the condition of interest. Other essential criteria (e.g. clear description of comparators, patient group indication and appropriate time horizon) were generally fulfilled, while most of the UK-specific requirements were not met. Conclusion Based on this review there is a dearth of up-to-date, robust evidence on the cost effectiveness of radiotherapy in cancer suitable to support decision making in the UK. Studies selected did not fully satisfy essential method standards currently recommended by NICE

    Altimetry for the future: building on 25 years of progress

    Get PDF
    In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology. The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the “Green” Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instruments’ development and satellite missions’ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion

    The Huallaga foreland basin evolution: Thrust propagation in a deltaic environment, northern Peruvian Andes

    No full text
    International audienceThe sub-Andean Huallaga basin is part of the modern retroforeland basin system of Peru. It corresponds to a thrust-and-fold belt superimposed on inverted and halokinetic structures and is characterized by Eocene Pliocene, thick synorogenic series that have controlled the burial history of petroleum systems. Sedimentological analysis and a sequentially restored cross-section based on seismic data and new field studies show three sequences of synorogenic deposits. The Eocene (Lower Pozo member) developed in shoreface environments, when the basin morphology corresponded to a foresag depozone linked to an orogenic unloading period. The Middle Eocene sequence (Upper Pozo member) developed in shallow marine environments and recorded a change in Andean geodynamics and the retroforeland basin system. The basin morphology corresponded to a foredeep depozone linked to an orogenic loading period. This configuration remained until the Middle Miocene (Chambira Formation). The Middle Miocene Pliocene sequence recorded the onset of the modern sub-Andean Huallaga basin that became a wedge-top depozone. Thrust propagation occurred in a deltaic environment, which evolved progressively to an alluvial system linked to the modern Amazon River
    • 

    corecore