7 research outputs found

    Collagen analogs with phosphorylcholine are inflammation-suppressing scaffolds for corneal regeneration from alkali burns in mini-pigs

    Get PDF
    The long-term survival of biomaterial implants is often hampered by surgery-induced inflammation that can lead to graft failure. Considering that most corneas receiving grafts are either pathological or inflamed before implantation, the risk of rejection is heightened. Here, we show that bioengineered, fully synthetic, and robust corneal implants can be manufactured from a collagen analog (collagen-like peptide-polyethylene glycol hybrid, CLP-PEG) and inflammation-suppressing polymeric 2-methacryloyloxyethyl phosphorylcholine (MPC) when stabilized with the triazine-based crosslinker 4-(4,6-Dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride. The resulting CLP-PEG-MPC implants led to reduced corneal swelling, haze, and neovascularization in comparison to CLP-PEG only implants when grafted into a mini-pig cornea alkali burn model of inflammation over 12 months. Implants incorporating MPC allowed for faster nerve regeneration and recovery of corneal sensation. CLP-PEG-MPC implants appear to be at a more advanced stage of regeneration than the CLP-PEG only implants, as evidenced by the presence of higher amounts of cornea-specific type V collagen, and a corresponding decrease in the presence of extracellular vesicles and exosomes in the corneal stroma, in keeping with the amounts present in healthy, unoperated corneas

    Functional connectivity changes differ in early and late-onset alzheimer's disease

    No full text
    International audienceAbstract At a similar stage, patients with early onset Alzheimer's disease (EOAD) have greater neocortical but less medial temporal lobe dysfunction and atrophy than the late‐onset form of the disease (LOAD). Whether the organization of neural networks also differs has never been investigated. This study aims at characterizing basal functional connectivity (FC) patterns of EOAD and LOAD in two groups of 14 patients matched for disease duration and severity, relative to age‐matched controls. All subjects underwent an extensive neuropsychological assessment. Magnetic resonance imaging was used to quantify atrophy and resting‐state FC focusing on : the default mode network (DMN), found impaired in earlier studies on AD, and the anterior temporal network (ATN) and dorso‐lateral prefrontal network (DLPFN), respectively involved in declarative memory and executive functions. Patterns of atrophy and cognitive impairment in EOAD and LOAD were in accordance with previous reports. FC within the DMN was similarly decreased in both EOAD and LOAD relative to controls. However, a double‐dissociated pattern of FC changes in ATN and DLPFN was found. EOAD exhibited decreased FC in the DLPFN and increased FC in the ATN relative to controls, while the reverse pattern was found in LOAD. In addition, ATN and DLPFN connectivity correlated respectively with memory and executive performances, suggesting that increased FC is here likely to reflect compensatory mechanisms. Thus, large‐scale neural network changes in EOAD and LOAD endorse both common features and differences, probably related to a distinct distribution of pathological changes. Hum Brain Mapp 35:2978–2994, 2014. © 2013 Wiley Periodicals, Inc

    Difference in imaging biomarkers of neurodegeneration between early and late-onset amnestic Alzheimer's disease

    No full text
    International audienceNeuroimaging biomarkers differ between patients with early-onset Alzheimer's disease (EOAD) and late-onset Alzheimer's disease (LOAD). Whether these changes reflect cognitive heterogeneity or differences in disease severity is still unknown. This study aimed at investigating changes in neuroimaging biomarkers, according to the age of onset of the disease, in mild amnestic Alzheimer's disease patients with positive amyloid biomarkers in cerebrospinal fluid. Both patient groups were impaired on tasks assessing verbal and visual recognition memory. EOAD patients showed greater executive and linguistic deficits, while LOAD patients showed greater semantic memory impairment. In EOAD and LOAD, hypometabolism involved the bilateral temporoparietal junction and the posterior cingulate cortex. In EOAD, atrophy was widespread, including frontotemporoparietal areas, whereas it was limited to temporal regions in LOAD. Atrophic volumes were greater in EOAD than in LOAD. Hypometabolic volumes were similar in the 2 groups. Greater extent of atrophy in EOAD, despite similar extent of hypometabolism, could reflect different underlying pathophysiological processes, different glucose-based compensatory mechanisms or distinct level of premorbid atrophic lesions

    Added value of 18F-florbetaben amyloid PET in the diagnostic workup of most complex patients with dementia in France: A naturalistic study

    No full text
    International audienceIntroductionAlthough some studies have previously addressed the clinical impact of amyloid positron emission tomography (PET), none has specifically addressed its selective and hierarchical implementation in relation to cerebrospinal fluid analysis in a naturalistic setting.MethodsThis multicenter study was performed at French tertiary memory clinics in patients presenting with most complex clinical situations (i.e., early-onset, atypical clinical profiles, suspected mixed etiological conditions, unexpected rate of progression), for whom cerebrospinal fluid analysis was indicated but either not feasible or considered as noncontributory (ClinicalTrials.gov: NCT02681172).ResultsTwo hundred five patients were enrolled with evaluable florbetaben PET scans; 64.4% of scans were amyloid positive. PET results led to changed diagnosis and improved confidence in 66.8% and 81.5% of patients, respectively, and altered management in 80.0% of cases.DiscussionHigh-level improvement of diagnostic certainty and management is provided by selective and hierarchical implementation of florbetaben PET into current standard practices for the most complex dementia cases

    Penetrance estimation of Alzheimer disease in SORL1 loss-of-function variant carriers using a family-based strategy and stratification by APOE genotypes

    No full text
    International audienceAbstract Background Alzheimer disease (AD) is a common complex disorder with a high genetic component. Loss-of-function (LoF) SORL1 variants are one of the strongest AD genetic risk factors. Estimating their age-related penetrance is essential before putative use for genetic counseling or preventive trials. However, relative rarity and co-occurrence with the main AD risk factor, APOE -ε4, make such estimations difficult. Methods We proposed to estimate the age-related penetrance of SORL1 -LoF variants through a survival framework by estimating the conditional instantaneous risk combining (i) a baseline for non-carriers of SORL1- LoF variants, stratified by APOE-ε4 , derived from the Rotterdam study ( N = 12,255), and (ii) an age-dependent proportional hazard effect for SORL1- LoF variants estimated from 27 extended pedigrees (including 307 relatives ≥ 40 years old, 45 of them having genotyping information) recruited from the French reference center for young Alzheimer patients. We embedded this model into an expectation-maximization algorithm to accommodate for missing genotypes. To correct for ascertainment bias, proband phenotypes were omitted. Then, we assessed if our penetrance curves were concordant with age distributions of APOE -ε4-stratified SORL1- LoF variant carriers detected among sequencing data of 13,007 cases and 10,182 controls from European and American case-control study consortia. Results SORL1- LoF variants penetrance curves reached 100% (95% confidence interval [99–100%]) by age 70 among APOE -ε4ε4 carriers only, compared with 56% [40–72%] and 37% [26–51%] in ε4 heterozygous carriers and ε4 non-carriers, respectively. These estimates were fully consistent with observed age distributions of SORL1- LoF variant carriers in case-control study data. Conclusions We conclude that SORL1- LoF variants should be interpreted in light of APOE genotypes for future clinical applications
    corecore