1,713 research outputs found
Spin-polarized electron transport in ferromagnet/semiconductor heterostructures: Unification of ballistic and diffusive transport
A theory of spin-polarized electron transport in ferromagnet/semiconductor
heterostructures, based on a unified semiclassical description of ballistic and
diffusive transport in semiconductor structures, is developed. The aim is to
provide a framework for studying the interplay of spin relaxation and transport
mechanism in spintronic devices. A key element of the unified description of
transport inside a (nondegenerate) semiconductor is the thermoballistic current
consisting of electrons which move ballistically in the electric field arising
from internal and external electrostatic potentials, and which are thermalized
at randomly distributed equilibration points. The ballistic component in the
unified description gives rise to discontinuities in the chemical potential at
the boundaries of the semiconductor, which are related to the Sharvin interface
conductance. By allowing spin relaxation to occur during the ballistic motion
between the equilibration points, a thermoballistic spin-polarized current and
density are constructed in terms of a spin transport function. An integral
equation for this function is derived for arbitrary values of the momentum and
spin relaxation lengths. For field-driven transport in a homogeneous
semiconductor, the integral equation can be converted into a second-order
differential equation that generalizes the standard spin drift-diffusion
equation. The spin polarization in ferromagnet/semiconductor heterostructures
is obtained by invoking continuity of the current spin polarization and
matching the spin-resolved chemical potentials on the ferromagnet sides of the
interfaces. Allowance is made for spin-selective interface resistances.
Examples are considered which illustrate the effects of transport mechanism and
electric field.Comment: 23 pages, 8 figures, REVTEX 4; minor corrections introduced; to
appear in Phys. Rev.
Spin Accumulation in Quantum Wires with Strong Rashba Spin-Orbit Coupling
We present analytical and numerical results for the effect of Rashba
spin-orbit coupling on band structure, transport, and interaction effects in
quantum wires when the spin precession length is comparable to the wire width.
In contrast to the weak-coupling case, no common spin-quantization axis can be
defined for eigenstates within a single-electron band. The situation with only
the lowest spin-split subbands occupied is particularly interesting because
electrons close to Fermi points of the same chirality can have approximately
parallel spins. We discuss consequences for spin-dependent transport and
effective Tomonaga-Luttinger descriptions of interactions in the quantum wire.Comment: 4 pages, 4 figures, expanded discussion of spin accumulatio
Magnetization of a two-dimensional electron gas with a second filled subband
We have measured the magnetization of a dual-subband two-dimensional electron
gas, confined in a GaAs/AlGaAs heterojunction. In contrast to two-dimensional
electron gases with a single subband, we observe non-1/B-periodic, triangularly
shaped oscillations of the magnetization with an amplitude significantly less
than per electron. All three effects are explained by a
field dependent self-consistent model, demonstrating the shape of the
magnetization is dominated by oscillations in the confining potential.
Additionally, at 1 K, we observe small oscillations at magnetic fields where
Landau-levels of the two different subbands cross.Comment: 4 pages, 4 figure
Spintronics: Fundamentals and applications
Spintronics, or spin electronics, involves the study of active control and
manipulation of spin degrees of freedom in solid-state systems. This article
reviews the current status of this subject, including both recent advances and
well-established results. The primary focus is on the basic physical principles
underlying the generation of carrier spin polarization, spin dynamics, and
spin-polarized transport in semiconductors and metals. Spin transport differs
from charge transport in that spin is a nonconserved quantity in solids due to
spin-orbit and hyperfine coupling. The authors discuss in detail spin
decoherence mechanisms in metals and semiconductors. Various theories of spin
injection and spin-polarized transport are applied to hybrid structures
relevant to spin-based devices and fundamental studies of materials properties.
Experimental work is reviewed with the emphasis on projected applications, in
which external electric and magnetic fields and illumination by light will be
used to control spin and charge dynamics to create new functionalities not
feasible or ineffective with conventional electronics.Comment: invited review, 36 figures, 900+ references; minor stylistic changes
from the published versio
Search for the standard model Higgs boson in the H to ZZ to 2l 2nu channel in pp collisions at sqrt(s) = 7 TeV
A search for the standard model Higgs boson in the H to ZZ to 2l 2nu decay
channel, where l = e or mu, in pp collisions at a center-of-mass energy of 7
TeV is presented. The data were collected at the LHC, with the CMS detector,
and correspond to an integrated luminosity of 4.6 inverse femtobarns. No
significant excess is observed above the background expectation, and upper
limits are set on the Higgs boson production cross section. The presence of the
standard model Higgs boson with a mass in the 270-440 GeV range is excluded at
95% confidence level.Comment: Submitted to JHE
Measurement of the Lifetime Difference Between B_s Mass Eigenstates
We present measurements of the lifetimes and polarization amplitudes for B_s
--> J/psi phi and B_d --> J/psi K*0 decays. Lifetimes of the heavy (H) and
light (L) mass eigenstates in the B_s system are separately measured for the
first time by determining the relative contributions of amplitudes with
definite CP as a function of the decay time. Using 203 +/- 15 B_s decays, we
obtain tau_L = (1.05 +{0.16}/-{0.13} +/- 0.02) ps and tau_H = (2.07
+{0.58}/-{0.46} +/- 0.03) ps. Expressed in terms of the difference DeltaGamma_s
and average Gamma_s, of the decay rates of the two eigenstates, the results are
DeltaGamma_s/Gamma_s = (65 +{25}/-{33} +/- 1)%, and DeltaGamma_s = (0.47
+{0.19}/-{0.24} +/- 0.01) inverse ps.Comment: 8 pages, 3 figures, 2 tables; as published in Physical Review Letters
on 16 March 2005; revisions are for length and typesetting only, no changes
in results or conclusion
Search for the Higgs boson in events with missing transverse energy and b quark jets produced in proton-antiproton collisions at s**(1/2)=1.96 TeV
We search for the standard model Higgs boson produced in association with an
electroweak vector boson in events with no identified charged leptons, large
imbalance in transverse momentum, and two jets where at least one contains a
secondary vertex consistent with the decay of b hadrons. We use ~1 fb-1
integrated luminosity of proton-antiproton collisions at s**(1/2)=1.96 TeV
recorded by the CDF II experiment at the Tevatron. We find 268 (16) single
(double) b-tagged candidate events, where 248 +/- 43 (14.4 +/- 2.7) are
expected from standard model background processes. We place 95% confidence
level upper limits on the Higgs boson production cross section for several
Higgs boson masses ranging from 110 GeV/c2 to 140 GeV/c2. For a mass of 115
GeV/c2 the observed (expected) limit is 20.4 (14.2) times the standard model
prediction.Comment: 8 pages, 2 figures, submitted to Phys. Rev. Let
Observation and Mass Measurement of the Baryon
We report the observation and measurement of the mass of the bottom, strange
baryon through the decay chain , where
, , and .
Evidence for observation is based on a signal whose probability of arising from
the estimated background is 6.6 x 10^{-15}, or 7.7 Gaussian standard
deviations. The mass is measured to be (stat.) (syst.) MeV/.Comment: Minor text changes for the second version. Accepted by Phys. Rev.
Let
Polarizations of J/psi and psi(2S) Mesons Produced in ppbar Collisions at 1.96 TeV
We have measured the polarizations of \jpsi and \psiprime mesons as
functions of their transverse momentum \pt when they are produced promptly in
the rapidity range with \pt \geq 5 \pgev. The analysis is performed
using a data sample with an integrated luminosity of about 800 \ipb collected
by the CDF II detector. For both vector mesons, we find that the polarizations
become increasingly longitudinal as \pt increases from 5 to 30 \pgev. These
results are compared to the predictions of nonrelativistic quantum
chromodynamics and other contemporary models. The effective polarizations of
\jpsi and \psiprime mesons from -hadron decays are also reported.Comment: 8 pages, 7 figures, published in Physical Review Letter
Precise measurement of the top quark mass in the lepton+jets topology at CDF II
We present a measurement of the mass of the top quark from proton-antiproton
collisions recorded at the CDF experiment in Run II of the Fermilab Tevatron.
We analyze events from the single lepton plus jets final state (). The top quark mass is extracted
using a direct calculation of the probability density that each event
corresponds to the final state. The probability is a function of both
the mass of the top quark and the energy scale of the calorimeter jets, which
is constrained {\it in situ} by the hadronic boson mass. Using 167 events
observed in 955 pb of integrated luminosity, we achieve the single
most precise measurement of the top quark mass, 170.8 2.2 (stat.)
1.4 (syst.) GeV/.Comment: accepted by Phys. Rev. Let
- …