111 research outputs found

    CAMAC System Controller fuer Telefunken-Rechner TR86

    Get PDF

    Development of a versatile laboratory experiment to teach the metabolic transformation of hydrolysis

    Get PDF
    In this paper we describe an easy, reliable, versatile and inexpensive laboratory experiment to teach the metabolic transformation of hydrolysis to Pharmacy students. The experiment does not require the sacrifice of any experimental animal, or any work with organs or tissues, and so can be implemented in a typical university chemistry laboratory. We used acetylsalicylic acid (ASA), hexyl salicylate (HS) and two enzymes, a lipase and an esterase. Since both ASS and HS liberate salicylic acid (SA) upon hydrolysis, students can evaluate the different enzymatic transformations by monitoring the amount of SA liberated. The learning outcomes are an enhanced student understanding of: (1) the process of hydrolysis; (2) the application of enzymatic transformations of molecules from food to xenobiotics; (3) the differences between the general specificity of substrate of both enzymes; (4) the concepts of the lipophilic pocket; (5) the catalytic triad and its regioselectivity in relation to the ester bond. A questionnaire was administered to participating students at three points in time: at the beginning of the module, after enzymatic hydrolysis was taught in class, and after the laboratory experiment. From an analysis of the questionnaire data we conclude that this practical helped Pharmacy students to understand these concepts

    Novel genetic loci associated with hippocampal volume

    Get PDF
    The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (rg =-0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness

    The genetic architecture of the human cerebral cortex

    Get PDF
    INTRODUCTION The cerebral cortex underlies our complex cognitive capabilities. Variations in human cortical surface area and thickness are associated with neurological, psychological, and behavioral traits and can be measured in vivo by magnetic resonance imaging (MRI). Studies in model organisms have identified genes that influence cortical structure, but little is known about common genetic variants that affect human cortical structure. RATIONALE To identify genetic variants associated with human cortical structure at both global and regional levels, we conducted a genome-wide association meta-analysis of brain MRI data from 51,665 individuals across 60 cohorts. We analyzed the surface area and average thickness of the whole cortex and 34 cortical regions with known functional specializations. RESULTS We identified 306 nominally genome-wide significant loci (P < 5 × 10−8) associated with cortical structure in a discovery sample of 33,992 participants of European ancestry. Of the 299 loci for which replication data were available, 241 loci influencing surface area and 14 influencing thickness remained significant after replication, with 199 loci passing multiple testing correction (P < 8.3 × 10−10; 187 influencing surface area and 12 influencing thickness). Common genetic variants explained 34% (SE = 3%) of the variation in total surface area and 26% (SE = 2%) in average thickness; surface area and thickness showed a negative genetic correlation (rG = −0.32, SE = 0.05, P = 6.5 × 10−12), which suggests that genetic influences have opposing effects on surface area and thickness. Bioinformatic analyses showed that total surface area is influenced by genetic variants that alter gene regulatory activity in neural progenitor cells during fetal development. By contrast, average thickness is influenced by active regulatory elements in adult brain samples, which may reflect processes that occur after mid-fetal development, such as myelination, branching, or pruning. When considered together, these results support the radial unit hypothesis that different developmental mechanisms promote surface area expansion and increases in thickness. To identify specific genetic influences on individual cortical regions, we controlled for global measures (total surface area or average thickness) in the regional analyses. After multiple testing correction, we identified 175 loci that influence regional surface area and 10 that influence regional thickness. Loci that affect regional surface area cluster near genes involved in the Wnt signaling pathway, which is known to influence areal identity. We observed significant positive genetic correlations and evidence of bidirectional causation of total surface area with both general cognitive functioning and educational attainment. We found additional positive genetic correlations between total surface area and Parkinson’s disease but did not find evidence of causation. Negative genetic correlations were evident between total surface area and insomnia, attention deficit hyperactivity disorder, depressive symptoms, major depressive disorder, and neuroticism. CONCLUSION This large-scale collaborative work enhances our understanding of the genetic architecture of the human cerebral cortex and its regional patterning. The highly polygenic architecture of the cortex suggests that distinct genes are involved in the development of specific cortical areas. Moreover, we find evidence that brain structure is a key phenotype along the causal pathway that leads from genetic variation to differences in general cognitive function

    Measurement of CP observables in B± → D(⁎)K± and B± → D(⁎)π± decays

    Get PDF
    Measurements of CP observables in B ± →D (⁎) K ± and B ± →D (⁎) π ± decays are presented, where D (⁎) indicates a neutral D or D ⁎ meson that is an admixture of D (⁎)0 and DÂŻ (⁎)0 states. Decays of the D ⁎ meson to the Dπ 0 and DÎł final states are partially reconstructed without inclusion of the neutral pion or photon, resulting in distinctive shapes in the B candidate invariant mass distribution. Decays of the D meson are fully reconstructed in the K ± π ∓ , K + K − and π + π − final states. The analysis uses a sample of charged B mesons produced in pp collisions collected by the LHCb experiment, corresponding to an integrated luminosity of 2.0, 1.0 and 2.0 fb −1 taken at centre-of-mass energies of s=7, 8 and 13 TeV, respectively. The study of B ± →D ⁎ K ± and B ± →D ⁎ π ± decays using a partial reconstruction method is the first of its kind, while the measurement of B ± →DK ± and B ± →Dπ ± decays is an update of previous LHCb measurements. The B ± →DK ± results are the most precise to date

    First observation of forward Z→bbˉZ \rightarrow b \bar{b} production in pppp collisions at s=8\sqrt{s}=8 TeV

    Get PDF
    The decay Z→bb¯ is reconstructed in pp collision data, corresponding to 2 fb −1 of integrated luminosity, collected by the LHCb experiment at a centre-of-mass energy of s=8 TeV. The product of the Z production cross-section and the Z→bb¯ branching fraction is measured for candidates in the fiducial region defined by two particle-level b -quark jets with pseudorapidities in the range 2.220 GeV and dijet invariant mass in the range 4520GeVanddijetinvariantmassintherange GeV and dijet invariant mass in the range 45 < m_{jj} < 165GeV.Fromasignalyieldof GeV. From a signal yield of 5462 \pm 763 Z \rightarrow b \bar{b}events,wheretheuncertaintyisstatistical,aproductioncross−sectiontimesbranchingfractionof events, where the uncertainty is statistical, a production cross-section times branching fraction of 332 \pm 46 \pm 59pbisobtained,wherethefirstuncertaintyisstatisticalandthesecondsystematic.Themeasuredsignificanceofthesignalyieldis6.0standarddeviations.Thismeasurementrepresentsthefirstobservationofthe pb is obtained, where the first uncertainty is statistical and the second systematic. The measured significance of the signal yield is 6.0 standard deviations. This measurement represents the first observation of the Z \rightarrow b \bar{b}productionintheforwardregionof production in the forward region of pp$ collisions

    Study of the lineshape of the chi(c1) (3872) state

    Get PDF
    A study of the lineshape of the chi(c1) (3872) state is made using a data sample corresponding to an integrated luminosity of 3 fb(-1) collected in pp collisions at center-of-mass energies of 7 and 8 TeV with the LHCb detector. Candidate chi(c1)(3872) and psi(2S) mesons from b-hadron decays are selected in the J/psi pi(+)pi(-) decay mode. Describing the lineshape with a Breit-Wigner function, the mass splitting between the chi(c1 )(3872) and psi(2S) states, Delta m, and the width of the chi(c1 )(3872) state, Gamma(Bw), are determined to be (Delta m=185.598 +/- 0.067 +/- 0.068 Mev,)(Gamma BW=1.39 +/- 0.24 +/- 0.10 Mev,) where the first uncertainty is statistical and the second systematic. Using a Flatte-inspired model, the mode and full width at half maximum of the lineshape are determined to be (mode=3871.69+0.00+0.05 MeV.)(FWHM=0.22-0.04+0.13+0.07+0.11-0.06-0.13 MeV, ) An investigation of the analytic structure of the Flatte amplitude reveals a pole structure, which is compatible with a quasibound D-0(D) over bar*(0) state but a quasivirtual state is still allowed at the level of 2 standard deviations

    Measurement of the CKM angle γγ in B±→DK±B^\pm\to D K^\pm and B±→Dπ±B^\pm \to D π^\pm decays with D→KS0h+h−D \to K_\mathrm S^0 h^+ h^-

    Get PDF
    A measurement of CPCP-violating observables is performed using the decays B±→DK±B^\pm\to D K^\pm and B±→Dπ±B^\pm\to D \pi^\pm, where the DD meson is reconstructed in one of the self-conjugate three-body final states KSπ+π−K_{\mathrm S}\pi^+\pi^- and KSK+K−K_{\mathrm S}K^+K^- (commonly denoted KSh+h−K_{\mathrm S} h^+h^-). The decays are analysed in bins of the DD-decay phase space, leading to a measurement that is independent of the modelling of the DD-decay amplitude. The observables are interpreted in terms of the CKM angle Îł\gamma. Using a data sample corresponding to an integrated luminosity of 9 fb−19\,\text{fb}^{-1} collected in proton-proton collisions at centre-of-mass energies of 77, 88, and 13 TeV13\,\text{TeV} with the LHCb experiment, Îł\gamma is measured to be (68.7−5.1+5.2)∘\left(68.7^{+5.2}_{-5.1}\right)^\circ. The hadronic parameters rBDKr_B^{DK}, rBDπr_B^{D\pi}, ÎŽBDK\delta_B^{DK}, and ÎŽBDπ\delta_B^{D\pi}, which are the ratios and strong-phase differences of the suppressed and favoured B±B^\pm decays, are also reported
    • 

    corecore