82 research outputs found

    An R-Package for the Deconvolution and Integration of 1D NMR Data: MetaboDecon1D

    Get PDF
    NMR spectroscopy is a widely used method for the detection and quantification of metabolites in complex biological fluids. However, the large number of metabolites present in a biological sample such as urine or plasma leads to considerable signal overlap in one-dimensional NMR spectra, which in turn hampers both signal identification and quantification. As a consequence, we have developed an easy to use R-package that allows the fully automated deconvolution of overlapping signals in the underlying Lorentzian line-shapes. We show that precise integral values are computed, which are required to obtain both relative and absolute quantitative information. The algorithm is independent of any knowledge of the corresponding metabolites, which also allows the quantitative description of features of yet unknown identity

    Bucket Fuser: Statistical Signal Extraction for 1D 1H NMR Metabolomic Data

    Get PDF
    Untargeted metabolomics is a promising tool for identifying novel disease biomarkers and unraveling underlying pathomechanisms. Nuclear magnetic resonance (NMR) spectroscopy is particularly suited for large-scale untargeted metabolomics studies due to its high reproducibility and cost effectiveness. Here, one-dimensional (1D) 1H NMR experiments offer good sensitivity at reasonable measurement times. Their subsequent data analysis requires sophisticated data preprocessing steps, including the extraction of NMR features corresponding to specific metabolites. We developed a novel 1D NMR feature extraction procedure, called Bucket Fuser (BF), which is based on a regularized regression framework with fused group LASSO terms. The performance of the BF procedure was demonstrated using three independent NMR datasets and was benchmarked against existing state-of-the-art NMR feature extraction methods. BF dynamically constructs NMR metabolite features, the widths of which can be adjusted via a regularization parameter. BF consistently improved metabolite signal extraction, as demonstrated by our correlation analyses with absolutely quantified metabolites. It also yielded a higher proportion of statistically significant metabolite features in our differential metabolite analyses. The BF algorithm is computationally efficient and it can deal with small sample sizes. In summary, the Bucket Fuser algorithm, which is available as a supplementary python code, facilitates the fast and dynamic extraction of 1D NMR signals for the improved detection of metabolic biomarker

    BITES: Balanced Individual Treatment Effect for Survival data

    Get PDF
    Estimating the effects of interventions on patient outcome is one of the key aspects of personalized medicine. Their inference is often challenged by the fact that the training data comprises only the outcome for the administered treatment, and not for alternative treatments (the so-called counterfactual outcomes). Several methods were suggested for this scenario based on observational data, i.e.~data where the intervention was not applied randomly, for both continuous and binary outcome variables. However, patient outcome is often recorded in terms of time-to-event data, comprising right-censored event times if an event does not occur within the observation period. Albeit their enormous importance, time-to-event data is rarely used for treatment optimization. We suggest an approach named BITES (Balanced Individual Treatment Effect for Survival data), which combines a treatment-specific semi-parametric Cox loss with a treatment-balanced deep neural network; i.e.~we regularize differences between treated and non-treated patients using Integral Probability Metrics (IPM). We show in simulation studies that this approach outperforms the state of the art. Further, we demonstrate in an application to a cohort of breast cancer patients that hormone treatment can be optimized based on six routine parameters. We successfully validated this finding in an independent cohort. BITES is provided as an easy-to-use python implementation

    Visceral adipose tissue but not subcutaneous adipose tissue is associated with urine and serum metabolites

    Get PDF
    Obesity is a complex multifactorial phenotype that influences several metabolic pathways. Yet, few studies have examined the relations of different body fat compartments to urinary and serum metabolites. Anthropometric phenotypes (visceral adipose tissue (VAT), subcutaneous adipose tissue (SAT), the ratio between VAT and SAT (VSR), body mass index (BMI), waist circumference (WC)) and urinary and serum metabolite concentrations measured by nuclear magnetic resonance spectroscopy were measured in a population-based sample of 228 healthy adults. Multivariable linear and logistic regression models, corrected for multiple testing using the false discovery rate, were used to associate anthropometric phenotypes with metabolites. We adjusted for potential confounding variables: age, sex, smoking, physical activity, menopausal status, estimated glomerular filtration rate (eGFR), urinary glucose, and fasting status. In a fully adjusted logistic regression model dichotomized for the absence or presence of quantifiable metabolite amounts, VAT, BMI and WC were inversely related to urinary choline (ß = -0.18, p = 2.73*10−3), glycolic acid (ß = -0.20, 0.02), and guanidinoacetic acid (ß = -0.12, p = 0.04), and positively related to ethanolamine (ß = 0.18, p = 0.02) and dimethylamine (ß = 0.32, p = 0.02). BMI and WC were additionally inversely related to urinary glutamine and lactic acid. Moreover, WC was inversely associated with the detection of serine. VAT, but none of the other anthropometric parameters, was related to serum essential amino acids, such as valine, isoleucine, and phenylalanine among men. Compared to other adiposity measures, VAT demonstrated the strongest and most significant relations to urinary and serum metabolites. The distinct relations of VAT, SAT, VSR, BMI, and WC to metabolites emphasize the importance of accurately differentiating between body fat compartments when evaluating the potential role of metabolic regulation in the development of obesity-related diseases, such as insulin resistance, type 2 diabetes, and cardiovascular disease

    A multi-source data integration approach reveals novel associations between metabolites and renal outcomes in the German Chronic Kidney Disease study

    Get PDF
    Omics data facilitate the gain of novel insights into the pathophysiology of diseases and, consequently, their diagnosis, treatment, and prevention. To this end, omics data are integrated with other data types, e.g., clinical, phenotypic, and demographic parameters of categorical or continuous nature. We exemplify this data integration issue for a chronic kidney disease (CKD) study, comprising complex clinical, demographic, and one-dimensional H-1 nuclear magnetic resonance metabolic variables. Routine analysis screens for associations of single metabolic features with clinical parameters while accounting for confounders typically chosen by expert knowledge. This knowledge can be incomplete or unavailable. We introduce a framework for data integration that intrinsically adjusts for confounding variables. We give its mathematical and algorithmic foundation, provide a state-of-the-art implementation, and evaluate its performance by sanity checks and predictive performance assessment on independent test data. Particularly, we show that discovered associations remain significant after variable adjustment based on expert knowledge. In contrast, we illustrate that associations discovered in routine univariate screening approaches can be biased by incorrect or incomplete expert knowledge. Our data integration approach reveals important associations between CKD comorbidities and metabolites, including novel associations of the plasma metabolite trimethylamine-N-oxide with cardiac arrhythmia and infarction in CKD stage 3 patients

    Evaluation of polygenic risk scores for breast and ovarian cancer risk prediction in BRCA1 and BRCA2 mutation carriers

    Get PDF
    Background: Genome-wide association studies (GWAS) have identified 94 common single-nucleotide polymorphisms (SNPs) associated with breast cancer (BC) risk and 18 associated with ovarian cancer (OC) risk. Several of these are also associated with risk of BC or OC for women who carry a pathogenic mutation in the high-risk BC and OC genes BRCA1 or BRCA2. The combined effects of these variants on BC or OC risk for BRCA1 and BRCA2 mutation carriers have not yet been assessed while their clinical management could benefit from improved personalized risk estimates. Methods: We constructed polygenic risk scores (PRS) using BC and OC susceptibility SNPs identified through population-based GWAS: for BC (overall, estrogen receptor [ER]-positive, and ER-negative) and for OC. Using data from 15 252 female BRCA1 and 8211 BRCA2 carriers, the association of each PRS with BC or OC risk was evaluated using a weighted cohort approach, with time to diagnosis as the outcome and estimation of the hazard ratios (HRs) per standard deviation increase in the PRS. Results: The PRS for ER-negative BC displayed the strongest association with BC risk in BRCA1 carriers (HR = 1.27, 95% confidence interval [CI] = 1.23 to 1.31, P = 8.2 x 10(53)). In BRCA2 carriers, the strongest association with BC risk was seen for the overall BC PRS (HR = 1.22, 95% CI = 1.17 to 1.28, P = 7.2 x 10(-20)). The OC PRS was strongly associated with OC risk for both BRCA1 and BRCA2 carriers. These translate to differences in absolute risks (more than 10% in each case) between the top and bottom deciles of the PRS distribution; for example, the OC risk was 6% by age 80 years for BRCA2 carriers at the 10th percentile of the OC PRS compared with 19% risk for those at the 90th percentile of PRS. Conclusions: BC and OC PRS are predictive of cancer risk in BRCA1 and BRCA2 carriers. Incorporation of the PRS into risk prediction models has promise to better inform decisions on cancer risk management

    p53 and ovarian carcinoma survival: an Ovarian Tumor Tissue Analysis consortium study

    Get PDF
    Our objective was to test whether p53 expression status is associated with survival for women diagnosed with the most common ovarian carcinoma histotypes (high-grade serous carcinoma [HGSC], endometrioid carcinoma [EC], and clear cell carcinoma [CCC]) using a large multi-institutional cohort from the Ovarian Tumor Tissue Analysis (OTTA) consortium. p53 expression was assessed on 6,678 cases represented on tissue microarrays from 25 participating OTTA study sites using a previously validated immunohistochemical (IHC) assay as a surrogate for the presence and functional effect of TP53 mutations. Three abnormal expression patterns (overexpression, complete absence, and cytoplasmic) and the normal (wild type) pattern were recorded. Survival analyses were performed by histotype. The frequency of abnormal p53 expression was 93.4% (4,630/4,957) in HGSC compared to 11.9% (116/973) in EC and 11.5% (86/748) in CCC. In HGSC, there were no differences in overall survival across the abnormal p53 expression patterns. However, in EC and CCC, abnormal p53 expression was associated with an increased risk of death for women diagnosed with EC in multivariate analysis compared to normal p53 as the reference (hazard ratio [HR] = 2.18, 95% confidence interval [CI] 1.36-3.47, p = 0.0011) and with CCC (HR = 1.57, 95% CI 1.11-2.22, p = 0.012). Abnormal p53 was also associated with shorter overall survival in The International Federation of Gynecology and Obstetrics stage I/II EC and CCC. Our study provides further evidence that functional groups of TP53 mutations assessed by abnormal surrogate p53 IHC patterns are not associated with survival in HGSC. In contrast, we validate that abnormal p53 IHC is a strong independent prognostic marker for EC and demonstrate for the first time an independent prognostic association of abnormal p53 IHC with overall survival in patients with CCC

    Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast-ovarian cancer susceptibility locus

    Get PDF
    A locus at 19p13 is associated with breast cancer (BC) and ovarian cancer (OC) risk. Here we analyse 438 SNPs in this region in 46,451 BC and 15,438 OC cases, 15,252 BRCA1 mutation carriers and 73,444 controls and identify 13 candidate causal SNPs associated with serous OC (P=9.2 × 10-20), ER-negative BC (P=1.1 × 10-13), BRCA1-associated BC (P=7.7 × 10-16) and triple negative BC (P-diff=2 × 10-5). Genotype-gene expression associations are identified for candidate target genes ANKLE1 (P=2 × 10-3) and ABHD8 (P<2 × 10-3). Chromosome conformation capture identifies interactions between four candidate SNPs and ABHD8, and luciferase assays indicate six risk alleles increased transactivation of the ADHD8 promoter. Targeted deletion of a region containing risk SNP rs56069439 in a putative enhancer induces ANKLE1 downregulation; and mRNA stability assays indicate functional effects for an ANKLE1 3′-UTR SNP. Altogether, these data suggest that multiple SNPs at 19p13 regulate ABHD8 and perhaps ANKLE1 expression, and indicate common mechanisms underlying breast and ovarian cancer risk

    An original phylogenetic approach identified mitochondrial haplogroup T1a1 as inversely associated with breast cancer risk in BRCA2 mutation carriers

    Get PDF
    Introduction: Individuals carrying pathogenic mutations in the BRCA1 and BRCA2 genes have a high lifetime risk of breast cancer. BRCA1 and BRCA2 are involved in DNA double-strand break repair, DNA alterations that can be caused by exposure to reactive oxygen species, a main source of which are mitochondria. Mitochondrial genome variations affect electron transport chain efficiency and reactive oxygen species production. Individuals with different mitochondrial haplogroups differ in their metabolism and sensitivity to oxidative stress. Variability in mitochondrial genetic background can alter reactive oxygen species production, leading to cancer risk. In the present study, we tested the hypothesis that mitochondrial haplogroups modify breast cancer risk in BRCA1/2 mutation carriers. Methods: We genotyped 22,214 (11,421 affected, 10,793 unaffected) mutation carriers belonging to the Consortium of Investigators of Modifiers of BRCA1/2 for 129 mitochondrial polymorphisms using the iCOGS array. Haplogroup inference and association detection were performed using a phylogenetic approach. ALTree was applied to explore the reference mitochondrial evolutionary tree and detect subclades enriched in affected or unaffected individuals. Results: We discovered that subclade T1a1 was depleted in affected BRCA2 mutation carriers compared with the rest of clade T (hazard ratio (HR) = 0.55; 95% confidence interval (CI), 0.34 to 0.88; P = 0.01). Compared with the most frequent haplogroup in the general population (that is, H and T clades), the T1a1 haplogroup has a HR of 0.62 (95% CI, 0.40 to 0.95; P = 0.03). We also identified three potential susceptibility loci, including G13708A/rs28359178, which has demonstrated an inverse association with familial breast cancer risk. Conclusions: This study illustrates how original approaches such as the phylogeny-based method we used can empower classical molecular epidemiological studies aimed at identifying association or risk modification effects.Peer reviewe
    corecore