522 research outputs found

    Retinoic acid protects human breast cancer cells against etoposide-induced apoptosis by NF-kappaB-dependent but cIAP2-independent mechanisms

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Retinoids, through their cognate nuclear receptors, exert potent effects on cell growth, differentiation and apoptosis, and have significant promise for cancer therapy and chemoprevention. These ligands can determine the ultimate fate of target cells by stimulating or repressing gene expression directly, or indirectly through crosstalking with other signal transducers.</p> <p>Results</p> <p>Using different breast cancer cell models, we show here that depending on the cellular context retinoids can signal either towards cell death or cell survival. Indeed, retinoids can induce the expression of pro-apoptotic (i.e. TRAIL, TNF-Related Apoptosis-Inducing Ligand, Apo2L/TNFSF10) and anti-apoptotic (i.e. cIAP2, inhibitor of apoptosis protein-2) genes. Promoter mapping, gel retardation and chromatin immunoprecipitation assays revealed that retinoids induce the expression of this gene mainly through crosstalk with NF-kappaB. Supporting this crosstalk, the activation of NF-kappaB by retinoids in T47D cells antagonizes the apoptosis triggered by the chemotherapeutic drugs etoposide, camptothecin or doxorubicin. Notably apoptosis induced by death ligands (i.e. TRAIL or antiFAS) is not antagonized by retinoids. That knockdown of cIAP2 expression by small interfering RNA does not alter the inhibition of etoposide-induced apoptosis by retinoids in T47D cells reveals that stimulation of cIAP2 expression is not the cause of their anti-apoptotic action. However, ectopic overexpression of a NF-kappaB repressor increases apoptosis by retinoids moderately and abrogates almost completely the retinoid-dependent inhibition of etoposide-induced apoptosis. Our data exclude cIAP2 and suggest that retinoids target other regulator(s) of the NF-kappaB signaling pathway to induce resistance to etoposide on certain breast cancer cells.</p> <p>Conclusions</p> <p>This study shows an important role for the NF-kappaB pathway in retinoic acid signaling and retinoic acid-mediated resistance to cancer therapy-mediated apoptosis in breast cancer cells, independently of cIAP2. Our data support the use of NF-kappaB pathway activation as a marker for screening that will help to develop novel retinoids, or retinoid-based combination therapies with improved efficacy.</p

    Activation Function 2 in the Human Androgen Receptor Ligand Binding Domain Mediates Interdomain Communication with the NH 2 -terminal Domain

    Get PDF
    Activation function 2 in the ligand binding domain of nuclear receptors forms a hydrophobic cleft that binds the LXXLL motif of p160 transcriptional coactivators. Here we provide evidence that activation function 2 in the androgen receptor serves as the contact site for the androgen dependent NH(2)- and carboxyl-terminal interaction of the androgen receptor and only weakly interacts with p160 coactivators in an LXXLL-dependent manner. Mutagenesis studies indicate that it is the NH(2)-/carboxyl-terminal interaction that is required by activation function 2 to stabilize helix 12 and slow androgen dissociation critical for androgen receptor activity in vivo. The androgen receptor recruits p160 coactivators through its NH(2)-terminal and DNA binding domains in an LXXLL motif-independent manner. The results suggest a novel function for activation function 2 and a unique mechanism of nuclear receptor transactivation

    Characterising ChIP-seq binding patterns by model-based peak shape deconvolution

    Get PDF
    BACKGROUND: Chromatin immunoprecipitation combined with massive parallel sequencing (ChIP-seq) is widely used to study protein-chromatin interactions or chromatin modifications at genome-wide level. Sequence reads that accumulate locally at the genome (peaks) reveal loci of selectively modified chromatin or specific sites of chromatin-binding factors. Computational approaches (peak callers) have been developed to identify the global pattern of these sites, most of which assess the deviation from background by applying distribution statistics. RESULTS: We have implemented MeDiChISeq, a regression-based approach, which--by following a learning process--defines a representative binding pattern from the investigated ChIP-seq dataset. Using this model MeDiChISeq identifies significant genome-wide patterns of chromatin-bound factors or chromatin modification. MeDiChISeq has been validated for various publicly available ChIP-seq datasets and extensively compared with other peak callers. CONCLUSIONS: MeDiChI-Seq has a high resolution when identifying binding events, a high degree of peak-assessment reproducibility in biological replicates, a low level of false calls and a high true discovery rate when evaluated in the context of gold-standard benchmark datasets. Importantly, this approach can be applied not only to 'sharp' binding patterns--like those retrieved for transcription factors (TFs)--but also to the broad binding patterns seen for several histone modifications. Notably, we show that at high sequencing depths, MeDiChISeq outperforms other algorithms due to its powerful peak shape recognition capacity which facilitates discerning significant binding events from spurious background enrichment patterns that are enhanced with increased sequencing depths

    Controlled assembly of SNAP-PNA-fluorophore systems on DNA templates to produce fluorescence resonance energy transfer

    Get PDF
    The SNAP protein is a widely used self-labeling tag that can be used for tracking protein localization and trafficking in living systems. A model system providing controlled alignment of SNAP-tag units can provide a new way to study clustering of fusion proteins. In this work, fluorescent SNAP-PNA conjugates were controllably assembled on DNA frameworks forming dimers, trimers, and tetramers. Modification of peptide nucleic acid (PNA) with the O6-benzyl guanine (BG) group allowed the generation of site-selective covalent links between PNA and the SNAP protein. The modified BG-PNAs were labeled with fluorescent Atto dyes and subsequently chemo-selectively conjugated to SNAP protein. Efficient assembly into dimer and oligomer forms was verified via size exclusion chromatography (SEC), electrophoresis (SDS-PAGE), and fluorescence spectroscopy. DNA directed assembly of homo- and hetero-dimers of SNAP-PNA constructs induced homo- and hetero-FRET, respectively. Longer DNA scaffolds controllably aligned similar fluorescent SNAP-PNA constructs into higher oligomers exhibiting homo-FRET. The combined SEC and homo-FRET studies indicated the 1:1 and saturated assemblies of SNAP-PNA-fluorophore:DNA formed preferentially in this system. This suggested a kinetic/stoichiometric model of assembly rather than binomially distributed products. These BG-PNA-fluorophore building blocks allow facile introduction of fluorophores and/or assembly directing moieties onto any protein containing SNAP. Template directed assembly of PNA modified SNAP proteins may be used to investigate clustering behavior both with and without fluorescent labels which may find use in the study of assembly processes in cells

    Nucleic Acids Res

    Get PDF
    The absence of a quality control (QC) system is a major weakness for the comparative analysis of genome-wide profiles generated by next-generation sequencing (NGS). This concerns particularly genome binding/occupancy profiling assays like chromatin immunoprecipitation (ChIP-seq) but also related enrichment-based studies like methylated DNA immunoprecipitation/methylated DNA binding domain sequencing, global run on sequencing or RNA-seq. Importantly, QC assessment may significantly improve multidimensional comparisons that have great promise for extracting information from combinatorial analyses of the global profiles established for chromatin modifications, the bindings of epigenetic and chromatin-modifying enzymes/machineries, RNA polymerases and transcription factors and total, nascent or ribosome-bound RNAs. Here we present an approach that associates global and local QC indicators to ChIP-seq data sets as well as to a variety of enrichment-based studies by NGS. This QC system was used to certify >5600 publicly available data sets, hosted in a database for data mining and comparative QC analyses

    A proposed mechanism for progesterone regulation of trophoblast MMP2 transcription independent of classical progesterone response elements on its promoter

    Get PDF
    BACKGROUND: Progesterone receptor act as ligand-inducible transcription factor in the respective target cells by binding to specific progesterone response elements in the promoter of the target genes. However, despite the lack of the classical progesterone response elements on matrix-metalloproteinase-2 promoter, progesterone has been shown to decrease the activity of this promoter PRESENTATION OF THE HYPOTHESIS: It has recently been suggested that in addition to interacting with their classical co-activators and co-repressors, progesterone receptor are capable of binding to several transcription factors. By interacting with other classes of transcription factors, progesterone receptor is capable of transcriptional activation through the transcription factors cognate DNA binding site. TESTING THE HYPOTHESIS: Exploring transcription factors and transcription binding sites, interacting with the progesterone receptor in modulation of the matrix-metalloproteinase promoter. IMPLICATIONS OF THE HYPOTHESIS: Identification of additional endogenous progesterone target genes makes it possible to further explore the signaling mechanisms by which the hormone regulates biological actions. Furthermore, the concepts of ligand-driven conformational diversity and selective tissue actions can be exploited in the future for drug development which selectively regulate orphan receptors from the nuclear receptor family

    Essential versus accessory aspects of cell death: recommendations of the NCCD 2015

    Get PDF
    Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as ‘accidental cell death’ (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with the fact that its course can be altered by pharmacologic or genetic interventions. ‘Regulated cell death’ (RCD) can occur as part of physiologic programs or can be activated once adaptive responses to perturbations of the extracellular or intracellular microenvironment fail. The biochemical phenomena that accompany RCD may be harnessed to classify it into a few subtypes, which often (but not always) exhibit stereotyped morphologic features. Nonetheless, efficiently inhibiting the processes that are commonly thought to cause RCD, such as the activation of executioner caspases in the course of apoptosis, does not exert true cytoprotective effects in the mammalian system, but simply alters the kinetics of cellular demise as it shifts its morphologic and biochemical correlates. Conversely, bona fide cytoprotection can be achieved by inhibiting the transduction of lethal signals in the early phases of the process, when adaptive responses are still operational. Thus, the mechanisms that truly execute RCD may be less understood, less inhibitable and perhaps more homogeneous than previously thought. Here, the Nomenclature Committee on Cell Death formulates a set of recommendations to help scientists and researchers to discriminate between essential and accessory aspects of cell death
    • 

    corecore