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ABSTRACT

The absence of a quality control (QC) system is a
major weakness for the comparative analysis of
genome-wide profiles generated by next-generation
sequencing (NGS). This concerns particularly
genome binding/occupancy profiling assays like
chromatin immunoprecipitation (ChIP-seq) but also
related enrichment-based studies like methylated
DNA immunoprecipitation/methylated DNA binding
domain sequencing, global run on sequencing or
RNA-seq. Importantly, QC assessment may signifi-
cantly improve multidimensional comparisons that
have great promise for extracting information from
combinatorial analyses of the global profiles estab-
lished for chromatin modifications, the bindings
of epigenetic and chromatin-modifying enzymes/
machineries, RNA polymerases and transcription
factors and total, nascent or ribosome-bound
RNAs. Here we present an approach that associates
global and local QC indicators to ChIP-seq data sets
as well as to a variety of enrichment-based studies
by NGS. This QC system was used to certify >5600
publicly available data sets, hosted in a database for
data mining and comparative QC analyses.

INTRODUCTION

The recent development of high-throughput sequencing
technologies has led to a rapid expansion of studies
analyzing the genome-wide patterns of gene regulatory
events and features, such as epigenetic DNA and histone
modification, and the binding patterns of transcription
factors and their co-regulatory complexes, (posttransla-
tionally) modified chromatin-associated factors and
chromatin- or transcription-modulatory multi-subunit
machineries (1–9). Moreover, the mapping of transcrip-
tomes by RNA-seq (10–13), global nascent RNA

sequencing or global run on sequencing (GRO-seq) (14)
or ribosome-associated (‘ribosome footprinting’) RNAs
(15), and technologies revealing chromatin conformation
are also based on massive parallel sequencing (16–18).
A particular challenge is the comparison of multidimen-
sional profiles for several factors, their posttranslational
modifications and/or chromatin marks. Indeed, such
studies are not easily comparable, as they are performed
in different settings by different individuals using differ-
ent cells and antibodies. Moreover, profiles are estab-
lished at different platforms with highly variable
sequencing depths. As a result, studies performed even
with the same cells in different laboratories can differ
extensively (3). This presents serious limitations for the
interpretation of such global comparative studies and
reveals the need for a quantifiable system for assessing
the quality and comparability of next-generation
sequencing (NGS)-derived profiles and moreover the ro-
bustness of local features, such as peaks at particular loci,
which are derived from the mapping of read-count
intensities (RCIs).
A large number of factors can influence the quality

of NGS-based profilings. Particularly in the case of
immunoprecipitation-based approaches [e.g. chromatin
immunoprecipitation (ChIP-seq), methylated DNA
immunoprecipitation (19,20), GRO-seq (21)], experimental
parameters like cross-linking efficiencies in different cell
types or tissues, shearing or digestion of chromatin or the
selectivity and affinity of an antibody (batch) can vary sub-
stantially between experiments and different experimenters
and will ultimately impact on the overall quality of the final
readout. Currently, quality assessment is performed by
visual profile inspection of defined chromatin regions and
complemented by peak caller predictions. In addition, a
number of analytical methods have been described [for
a recent summary of the methodologies used by the
ENCODE consortium see (22)]. However, none of them
has been shown to be applicable to the large variety of
ChIP-seq and enrichment-related NGS profiling assays.
For instance, methods like fraction of mapped reads
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retrieved into peak regions (FRiP) (23) or irreproducibility
discovery rate (IDR) (24) require prior use of peak calling
algorithms for evaluation and are therefore dependent on
peak-calling performance of a given tool with the user-
defined parameters. Consequently, they cannot be easily
used for multi-profile comparisons when different peak
callers are required (e.g. transcription factors (TFs) and
histone modifications with ‘broad’ profiles).
In addition to the performance of the immunopre-

cipitation/enrichment assays, the rapid technological
progress provided NGS platforms with largely different
sequencing capacities ranging from tens of millions (e.g.
Illumina Genome analyzer v1, hereafter referred to as
‘GA1’) to >3 billion (HiSeq2000) reads per flow cell.
As a consequence, the public databases hosting NGS-
generated data sets are populated with ChIP-seq profiles
presenting a large variety in sequencing depth.
Importantly, previous studies have demonstrated that by
increasing the sequencing depth, the number of discovered
binding sites increases accordingly. Intuitively, it is
expected that the number of sequenced reads required to
discover all binding events is directly related to their total
number and to their binding pattern (i.e. ‘broad’ regions
covering large parts of a genome will require more reads
to be properly identified than ‘sharp’ patterns with few
target sites). When evaluating the quality of NGS-based
profiling, it is therefore important to assess if a given
ChIP-seq profile is performed under optimal sequencing
conditions, including the minimal sequencing depth
required to discover most of the relevant binding events
of a given factor.
For all the above reasons, we have developed a bio-

informatics-based quality control (QC) system that uses
raw NGS data sets to (i) infer a set of global QC indicators
(QCis), which reveal the comparability of different
enriched-NGS data sets, (ii) provide local QCis to judge
the robustness of cumulative read counts (‘peaks or
islands’) in a particular region, (iii) provide guidelines
for the choice of the optimal sequencing depth for a
given target and, finally, (iv) to have quantitative means
of comparing different antibodies and antibody batches
for ChIP-seq and related antibody-driven studies. In
addition, we have established a QC indicator database
that will be expanded to cover virtually all publicly avail-
able enrichment-related NGS profiling assays. Thus, users
can compare the quality indicators computed by the
NGS-QCi Generator for a given ChIP-seq experiment
with the quality indicators for published data sets
present in the QC indicator database. This information
will guide users toward optimization of the ChIP-seq
process, if the QC is lower than that achieved previously
by others and/or with other antibodies. Moreover, this QC
system will be useful for antibody development and certi-
fication. We discuss the simplicity and versatility of the
present QC method and database in view of currently
existing QC assessment procedures and guidelines. The
NGS-QC Database of QC indicators for publicly available
profiles and the NGS-QC Generator tool are freely
accessible through a customized Galaxy instance at
http://igbmc.fr/Gronemeyer_NGS_QC.

MATERIALS AND METHODS

Data sets

Publicly available data sets were downloaded from GEO
(25). When available, aligned files (either in BED or BAM
format) were used; otherwise sequence data sets, available
through the short read archive database, were first aligned
to the corresponding reference genome using Bowtie2
under standard alignment options (26).

Assessment of the inherent robustness of ChIP-seq profiles

Based on the rationale that beyond a sequencing depth
threshold a ChIP-seq profile changes only in amplitude
but not in pattern, we evaluated this property by monitor-
ing the changes of its RCIs after read-subsampling.
For this, aligned reads were randomly sampled at three
distinct densities (90, 70 and 50%; referred to as s90, s70
and s50 subsets, respectively). To avoid bias, random
sampling was performed without replacement; each separ-
ately sampled density subset was generated from the
original read data set. RCI profiles were constructed by
counting the overlaps within a defined window (‘bin’).
With the aim of having no more than one binding event
per bin, it is currently fixed to 500 bp. An empirical evalu-
ation of the influence of this parameter on the assessment
of the quality indicators confirmed our initial choice
(Supplementary Figure S1d).

Reconstructed profiles from randomly sampled subsets
are then compared with that constructed from the initial
total mapped reads (TMRs) by computing the recovered
RCI (recRCI) per bin after sampling as follows:

recRCI ¼ ð
samRCI

oRCI
Þ � 100

Where samRCI is the RCI/bin retrieved after sampling
and oRCI is that found in the original profile. Under the
working hypothesis that, as a consequence of random
sampling, recRCI is directly proportional to the
sampling density, the divergence from the expected RCI
behavior is measured as follows:

@RCI ¼ samd� recRCI

where samd corresponds to the random sampling density;
i.e. 90, 70 and 50% for s90, s70 and s50, respectively.
Importantly, the RCI dispersion or dRCI is inversely pro-
portional to the original RCI (Supplementary Figure S1C)
and it has been empirically observed to present a direct
correlation with the quality of ChIP-seq profiles
(Supplementary Figure S2). Thus, for providing a quanti-
tative assessment of the changes of RCI dispersion in a
given data set, we have evaluated the fraction of bins dis-
playing a dRCI within in a given interval, which has been
defined as the global density QC indicator ‘denQCi’. This
global indicator—evaluated in conditions where only a
half of the initial sequenced reads are available (s50)—is
systematically used in this study to measure the degree
of robustness of the evaluated profile to the read-
subsampling treatment (i.e. high denQCi corresponds to
low RCI dispersion). In addition, the changes in robust-
ness on subsequent read subsampling has been evaluated

e196 Nucleic Acids Research, 2013, Vol. 41, No. 21 PAGE 2 OF 13

Downloaded from https://academic.oup.com/nar/article-abstract/41/21/e196/1280676
by UNIVERSITE LOUIS PASTEUR SERVICE COMMUN DE DOCUMENTATION user
on 06 February 2018

IDR (
,
,
QC indicators
``
''
s
quality control
http://igbmc.fr/Gronemeyer_NGS_QC
 (SRA)
read-count intensities (
)
&percnt;
&percnt;
Read
count intensity (
)
``
''
ly
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt829/-/DC1
to 
ing
&percnt;
&percnt;
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt829/-/DC1
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt829/-/DC1
it 
 - 
 - 
up


by comparing the denQCi for the sampling closest to the
original profile (s90) with that sampling only half of the
sequenced reads (s50). This is defined as the similarity
QC (simQCi) indicator, computed as ratio between
denQCis for the s90 and s50 sampling subsets. The
current version of NGS-QCi Generator provides both
global quality indicators (denQCi and simQCi) for disper-
sion intervals of 2.5, 5 and 10%. Further details concern-
ing the assessment of these indicators are provided in the
QC report (see Supplementary File S1 and Supplementary
Figure S4).

Local QCis

Given that the above analyses were computed for 500-bp
bins, the dRCI/bin data can be used as local QCis. The
NGS-QCi Generator provides such information in either
wiggle or BED formats; the default condition identifies
bins with dRCI� 10%. Local QCis in wiggle file format
can be uploaded in the Integrated Genome Browser (IGB)
and displayed as a heat-map together with standard RCI
wiggle files (as illustrated in Figure 3B). In a similar
manner, the corresponding BED file can be uploaded in
the UCSC Genome Browser. This display option is useful
to visualize predicted dRCIs associated to a given chro-
matin region of interest. Furthermore, 500-bp chromatin
regions with dRCIs thresholds of 2.5, 5 or 10% can be
downloaded as a table in BED format. The data sets fa-
cilitate comparative analyses of multiple profiles in the
context of defined dRCI thresholds.

QC-STAMP and NGS-QCi database

The contribution of the two QCis to the single descriptor
QC-STAMP was defined by following equation:

QC-STAMP ¼
denQCiðs50Þ

simQCi

To evaluate the divergence of this global descriptor over
all enrichment-related NGS profiles currently compiled in
the NGS-QC database, the QC-STAMP distributions
assessed for three different RCI dispersion intervals were
subdivided in four quantiles to which the following grades
have been attributed: ‘D’, lower quartile (<25%); ‘C’, in-
terquartile 25–50%; ‘B’, interquartile 50–75% and ‘A’
upper quartile (>75%). The NGS-QCi Generator
database associates these grades for 2.5, 5 and 10%
dRCI to each profile as a three-letter symbol, such that,
for example AAA (‘triple A’) reveals an A grade for all
three dRCIs. All available profiles are displayed as a
dynamic QC-STAMP versus TMR scatterplot, which
allows judging of their QCi similarities in the context of
the sequencing depth. Note that the global QC-STAMP
descriptor will be dynamically reevaluated when novel
entries are provided to the database.

Peak detection approach

In addition to the well-described peak caller MACS (27),
peak calling has been performed with MeDiChI, a model-
based deconvolution approach originally developed for
ChIP-chip assays (28), which we have adapted to

ChIP-seq analyses. MeDiChI computes a model from a
randomly selected subset of the multiple binding events
present in a genome-wide profile. This model is then
used as a deconvolution kernel for genome-wide predic-
tion of likely binding events, which are further validated
by nonparametric bootstrapping. As we compared ChIP-
seq profiles generated at different sequencing depths, we
have included a P-value/peak intensity product ranking-
based approach for defining a common false discovery
rate (FDR) during comparison. For this, a ranking coef-
ficient (RC) for the ith peak identified by MeDiChI was
calculated by the following equation:

RCi ¼ IntPeak i � ð�10 � log10ðp� valueiÞÞ

This RC was sorted from the highest to the lowest
value, and the FDR was assessed as follows:

FDRi ¼ �10 � log10ð
i�

N
p� valueiÞ

Where i* is the ranking position based on the RC, and N
is the total number of peaks. Thus, all ERa ChIP-seq
profiles have been compared at a FDR threshold �45 or
FDR adjusted P-value threshold 10�4.5.

RESULTS

Previous studies described the concept of a ‘saturation
point’ as the sequencing depth after which no new
binding sites are identified by a given peak caller with
additional sequenced reads (5,29). This concept has been
initially evaluated in a retrospective manner by assessing
the number of significant binding sites retrieved when only
a subset of the original sequenced reads was used for
profile reconstruction (random subsampling approach).
Intuitively the ‘saturation point’ concept predicts that
beyond such threshold no further binding sites would be
discovered and by consequence, the increased sequencing
depth should only influence the overall read-count inten-
sity of the corresponding profile.
Following the same concept, the QC system presented

here evaluates the stability of the pattern of a given profile
beyond the saturation point by measuring the reproduci-
bility of ChIP-seq and enrichment-related NGS profiles
under conditions where only a subset of the TMRs are
used for reconstruction. In the ideal ‘saturation’ condition,
such a reconstruction will generate a profile with the same
read distribution pattern across the genome but with a
decrease of the RCIs according to the percentage of
TMRs used (Figure 1A). The extent to which this reprodu-
cibility is attained is defined as ‘robustness’ of the original
profile and is assessed by the resampling of a given data set
at the level of half of the original TMRs (referred to as
‘s50’). Whereas none of the currently available profiles
displays ideal robustness at s50, the evaluation of the de-
viation from such ideal behavior reflects the degree of ro-
bustness and represents a quantitative method for
assigning a set of quality descriptors to anyNGS-generated
profile.
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ChIP-seq profile’s robustness dispersion provides quality
descriptors

This QC system evaluates the robustness of RCI disper-
sion for any given ChIP-seq and enrichment-related NGS
profiles by comparing distinct randomly sampled popula-
tions derived from the primary data set (Figure 1B).
Specifically, TMRs are first resampled at 90, 70 and
50% (referred to as s90, s70 and s50, respectively) of the
original data set. The genome-wide read-count distribu-
tion within 500 bp bins is then evaluated for the sampled
subsets and compared with that observed for the original
profile (s100) (for the effect of bin size on measuring
profile robustness see Supplementary Figure S1). Under
the assumption of a proportional RCI decrease on read
subsampling (saturation concept), the bin RCI divergence
from expectation is calculated (dRCI or local divergence;
defined as the difference between the theoretically
expected RCI and that observed after resampling).
Furthermore, a global quantitative assessment of the

changes in bin RCI dispersion is given by the evaluation
of the total bins presenting a defined RCI dispersion. This
global indicator, defined as density Quality indicator
(denQCi), evaluated in conditions where only a half of
the initial sequenced reads are available (s50), is systemat-
ically used in this study to illustrate the degree of robust-
ness of the evaluated profile to the reads-subsampling
treatment (i.e. ds50� 5% makes reference to the fraction
of bins with dRCI� 5% when half of the TMRs are used
for profile reconstruction).

Furthermore, the changes in robustness on successive
read subsampling has been evaluated by comparing the
denQCi obtained for the subset closest to the original
profile (s90) relative to that assessed from half of all
sequenced reads (s50). This second global indicator has
been defined as the ‘similarity QC indicator’ (simQCi)
because it reveals the similarity between the robustnesses
assessed at s90 and s50. Overall, the higher the denQCi and
the lower the simQCi, the more ‘robust’ is the evaluated
profile.

Figure 1. Assessing quality descriptors for ChIP-seq profiles. (A) Based on the rationale that a robust profile displays a proportional decrease of its
RCIs along the genome when a randomly sampled population of its TMRs is used for profile reconstruction, the present quality assessment method
quantifies the deviation from the expected RCI decrease within defined thresholds. (B) TMRs are randomly sampled into three distinct populations
(90, 70 and 50%), which are used for profile reconstruction by computing the RCIs in 500-bp bins. The RCI divergence from expectation (dRCI) is
measured relative to the original profile (s100). This information generates local QCis and is displayed together with the original RCI profile to
identify robust chromatin regions (dRCI heat-map below the bottom profile). In addition, two global QCis are calculated, comprising the density
QCi [denQCi, defined as the fraction of bins displaying <5% dRCI after 50% TMRs sampling (‘ds50/5’)] and the similarity QCi (simQCi), defined as
ratio of denQCi after 90% sampling over that after 50% sampling (‘ds90/s50/5’). (C) Genome-browser screenshots of three different H3K4me3 ChIP-
seq profiles. In addition, the RCI dispersion per 500-bp bins (local QCi) is illustrated as color-coded heat-map below the corresponding ChIP-seq
profiles. Note that while all three profiles present �19 million TMRs, they differ significantly in their global RCI amplitudes. Furthermore, their
corresponding global QCis assessed from 5 random sampling assays are displayed (average±standard deviation).
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ChIP-seq profiles established from similar TMRs can
lead to variable quality patterns as revealed by visual
inspection of three ChIP-seq profiles of the tri-methylation
of lysine 4 of histone 3 (H3K4me3) generated with
antibodies obtained from the same supplier and with
similar (�19 millions) TMR levels (Figure 1C). Yet, they
present major differences of global RCIs and background
levels (note the different scales). Indeed, the computing of
the QCis provides quantitative descriptors (denQCi,
ds50� 5% and simQCi, ds90/s50� 5%) for the relative
quality of the three profiles, which fully comply with the
visual quality assessment, thus illustrating the usefulness
of this approach in providing quantitative QC values
for comparing different ChIP-seq data sets. Note that
multiple random TMR samplings performed for each of
the illustrated profiles revealed a coefficient of variation of
<2% for the computed QCis. This demonstrates a high
stability of the measurement of global QCis even when
derived from a single random drawing (Figure 1C and
Supplementary Figure S2).

Sequencing-depth influences the quality of ChIP-seq
profiles

ChIP-seq and related assays are in most cases based on
reads obtained from a single flow cell channel.
Importantly, read densities of flow cells have largely
increased over the past few years, ranging from <40
million for the first Genome Analyzer from Illumina
(GA1) to >3 billion reads (300Gb) for the Hiseq2000
platform. Consequently, the TMRs used for profile recon-
struction can vary dramatically, inducing questions con-
cerning the comparability of profiles that were constructed
with different amounts of TMRs.

To evaluate the direct influence of sequencing depth on
NGS-profiling robustness, we performed an analysis of
biological replicates for ERa binding in H3396 breast
cancer cells (3), which was performed by using one
channel of the GA1, GA2X or HiSeq2000 platforms.
We also included a comparison with half of a HiSeq
channel by using multiplex technology. As expected, the
sequencing depth provided by the different sequencing
platforms, correlates well with the overall RCIs
(Figure 2A). Importantly, TMR sampling analysis
revealed a 16.2-fold increase of denQCi and, thus, global
profile ‘robustness’, with increased sequencing depth
(‘ds50� 5%’ in Figure 2A).

As expected, the number of TMRs used for ERa profile
construction strongly influenced the total number of pre-
dicted statistically significant binding sites. In fact, with
>50 million reads for the Hiseq2000 profile, 22 150 ERa
sites were predicted (FDR adjusted P-value threshold
10�4.5; for peak detection algorithm, see ‘Materials and
Methods’ section). In contrast, only 2038 sites were pre-
dicted from �5 million reads obtained with one GA1
channel (Figure 2B). Albeit the total number of predicted
peaks increased strongly with increasing sequencing
depths, the number of sites that complied with ds50� 5%
shows a much slower increase and entered a plateau phase
above 24 million TMRs. This indicates that the ‘robust’
ERa binding sites approach saturation as defined in

previous studies on sequencing depth and de novo discovery
of transcription factor binding sites (5,29,30).
As we have profiled ERa binding under identical treat-

ment conditions, it was reasonable to assume that the
sites identified at low sequencing depth constitute a
subpopulation of those identified in the high TMR
profiles. In fact, when comparing the ERa binding sites
predicted at highest sequencing depth with those derived
from the other profiles, not only the number but also the
robustness of peaks in the overlapping population
increased with increasing sequencing depth. From 1321
ERa sites in the overlap between GA1 and the full
channel HiSeq2000 profile, >80% of them (1096 sites)
comply with ds50� 5% (Figure 2C). Similarly, the
number of ERa binding sites overlapping with the GA2X
or half channel HiSeq2000 data sets increased strongly over
that obtained withGA1, as did the number of robust peaks.
The above comparison revealed also a significant

number of nonoverlapping sites (Figure 2C). While it is
reasonable to assume that the outliers of the HiSeq2000
profile (red) result mainly from the incomplete binding site
recovery from the other profiles, those outliers that are
seen in the low TMR profiles but not in the HiSeq2000
are more likely ‘false positives’. Indeed, the number of
such sites is variable and does not follow a common
trend as the increase of the overlap population with
increasing sequencing depth; in this respect, the GA2X
data set is suboptimal with 4- to 5-times more outliers
(green) than the GA1 (gray) and 1/2Hiseq (blue) ones.
Importantly, when considering only the robust peak popu-
lation, the GA2X outliers were significantly reduced
to about the level seen with GA1 and 1/2Hiseq ones. In
addition, the nonoverlapping sites, including those of the
full channel HiSeq2000, showed consistently lower peak
intensities and weaker confidence P-values relative to
overlapping population (Figure 2D).
Considering the full channel HiSeq data set as ‘gold

standard’, the number of recovered ‘true’ ERa binding
sites increased from <5% for the GA1 data set to
�60% for the half channel HiSeq2000 profile
(Figure 2E). Importantly, 80% ‘true positive’ binding
sites were recovered when only robust ERa sites are con-
sidered, indicating that the denQCi criterion identifies the
highly reliable sites when comparing ChIP-seqs with
largely differing sequencing depths.

The QCis are universally applicable to all ChIP-seq and
enrichment-related NGS profiling assays

While in previous studies profile saturation has been
defined after peak calling (5,29,30), the present QC evalu-
ation system evaluates robustness directly from the raw
pattern of genome-aligned reads. Therefore, QCis can
be established for any type of enrichment-related NGS
profiles, including ChIP-seq, RNA-seq, GRO-seq and
others, making this methodology a universal tool for multi-
dimensional quality profile comparison. Indeed, we have
computed QCis for several types of publicly available
NGS-generated profiles and observed a high variability
between the corresponding QCis even when data sets
with similar TMRs were compared (Figure 3A and
Supplementary Figure S3). RNA-seq, which does
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Figure 2. ERa binding sites detection assessed for different sequencing depths. (A) ERa RCI profiles obtained from different sequencing platforms
[i.e. Genome Analyser 1 (GA1); GA2X and Hiseq2000] are illustrated. Each of the displayed ChIP-seq profiles was obtained by sequencing a single
channel of the corresponding platform except for Hiseq2000, where half a channel or a full one was used. The corresponding mapped reads and their
associated denQCi (ds50� 5%) are displayed. (B) Total ERa binding sites identified in ChIP-seq profiles generated at different sequencing depths
compared with those that complied with the ds50� 5% criterion. ERa binding sites were predicted with MeDiChI (FDR adjusted P-values threshold
10�4.5; see methods for details). (C) Venn diagrams illustrating overlap and outlier populations for ERa binding sites retrieved from sequencing a full
HiSeq2000 channel compared with those identified at lower sequencing depths. This analysis was performed for total ERa sites (top panel) and those
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not involve manipulations like cross-linking and
immunoselection, generated the most robust profiles,
while a nonenriched input profile (whole-cell extract,
WCE) constructed from �19 million TMRs displayed the
worst quality indicators. For nearly identical TMRs, the

ChIP-seq profile of H4K20me1 revealed significantly
improved QCis, as expected for the immunoselection of
specific chromatin regions. Importantly, other histone
modification profiles constructed from similar or even
lower TMRs displayed better QCis than either

Figure 3. QCis for several types of ChIP-seq and enrichment-related NGS profiles. (A) Scatterplots illustrating the RCI dispersion (dRCI%) after
sampling for different types of NGS profiles (overlays of s90, black; s70, blue; s50, red). TMR, density (denQCi, ds50� 5%) and similarity (simQCi,
ds90/s50� 5%) QCis are indicated. Note that the input profile has the lowest denQCi and highest simQCi (WCE; top left), whereas the highest
denQCi and lowest simQCi were measured for an RNA-seq profile (bottom right). (B) RCI dispersion per 500-bp bins is illustrated as color-coded
heat-map (indicated at left) below the corresponding ChIP-seq profiles. (C) Density and similarity QCis for different profiles of the indicated histone
modifications are compared with input WCE profiles. Note the different characteristics of the target profiles on increasing TMRs, which reveals that
for H4K20me1 and H3K36me3 profiles presenting TMRs <15 million present QCis similar to the input. (D) Density and similarity QCis are
displayed at stringent (ds50� 2.5%), intermediate (ds50� 5%) and relaxed (ds50� 10%) dispersion intervals.

Figure 2. Continued
complying with ds50� 5% (bottom panels). (D) Boxplots displaying peak intensity and FDR adjusted P-value associated to overlap and outlier
populations displayed in (C). Note that the ERa sites in the overlaps show systematically higher intensities and confidence than the outliers and that
this difference is decreased for the ds50� 5% populations. (E) Considering the sites identified with the full HiSeq2000 channel as ‘true’ sites, the
fraction of true sites recovered in the compared profiles (top panel), as well as the false calls, estimated from the outlier population (bottom panel)
are illustrated. Note the increase of true sites and a concomitant decrease of false calls in the population that complies with ds50� 5%.
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H4K20me1 or WCE, thereby revealing that the robustness
of a profile depends not only on the sample preparation
and sequencing depth but also on the nature of the
immunoprecipitated target. Note that H4K20me1 and
H3K36me3 generate rather broad enrichment profiles
revealing a spread of the mark over a large chromatin
region, while those established for H3K27ac or
H3K4me3 exhibit more discrete patterns of locally
confined marks (Figure 3B). Our observation that the
500-bp RCI dispersion is generally higher in the
H4K20me1 or H3K36me3 profiles compared with those
of H3K27ac or H3K4me3 (see heat-map dRCI dispersion
in Figure 3B) is likely to originate from the combination of
several effects, including (i) the spread, local density and
accessibility of the marks and (ii) the quality (i.e. affinity
and selectivity) of the antibodies.
In addition to revealing quality differences between data

sets for different targets at similar TMRs, the QCi com-
putation also provides important quality information
about data sets for the same target at different sequencing
depths. Indeed, comparing the QCis for several
H4K20me1 data sets generated from largely different
TMRs reveals that below 15 million TMRs the QCis
become indistinguishable from the WCE profiles,
strongly arguing that significantly higher sequencing
depths are essential to establish accurate profiles for
such targets (Figure 3C). In contrast, H3K4me3 or
H3K27ac ChIP-seq profiles have good QCis even for
TMRs below 15 million reads.
That we observe major QCi differences between the

various data sets reported for similar TMRs indicates
that—in addition to the inherent pattern of the evaluated
target—other factors, involving most likely all the experi-
mental steps that generate the ultimate DNA library for
sequencing, influence the quality of the profile (Figure 3C
and Supplementary Figure S3).
Whereas most of the above described QCis have been

established for a dispersion interval of 5% (ds50� 5%),
different dispersion thresholds (e.g. ds50� 2.5% or
ds50� 10%) may reveal additional characteristics of the
studied profiles. Indeed Figure 3D illustrates that the QCis
determined for different dispersion intervals do not neces-
sarily show a linear relationship. This information has
been used as an additional source for quality evaluation
(see below QC-STAMP) and represents a potential
method for defining common QCi conditions in the case
of multi-profile comparisons by allowing variable robust-
ness dispersion cutoffs (Supplementary File S1).

NGS-QCi Generator: a stand-alone in silico platform
for computing QCis

The above methodology infers local and global quality
indicators for any available NSG-generated profile follow-
ing a stand-alone approach, as it does not require
additional wet-lab efforts. It has been implemented in
the NGS-QCi Generator, a computational tool that is
accessible at a customized cloud of the web-based
platform Galaxy (31–33) (Supplementary File S1). The
NGS-QCi Generator provides a comprehensive report
summarizing the global QCis (Supplementary Figure S4)
and provides access to the computed RCI dispersion per

500-bp bins (wiggle or BED format) defined as local QCis,
which can be used to identify the robustness of specific
regions of interest (Figure 3B and Supplementary
Figure S5). Using the NGS-QCi Generator we have
created a QCis database, which comprises at present the
QC analysis of >5600 NGS data sets, including ChIP-seq
profiles of histone modifications and variants, transcrip-
tion factors, as well as GRO-seq and RNA-seq profiles
(Figure 4A). This QCi database will be expanded to
cover virtually all of the publicly available NGS profiles.

To facilitate and simplify the recognition of QCi diver-
gence between profiles we have defined QC-STAMP, a
global descriptor that combines the information provided
by denQCi and simQCi. The QC-STAMP corresponds to a
three-letter code composed of A, B, C and D that is derived
from the position of a given profile QCi within the distri-
bution of compiled QCis in the database. The first letter
reveals this position for a dRCI dispersion threshold of
2.5%, the second and third letter for 5% and 10% dRCI,
respectively. A to D grading was done to specify the fol-
lowing intervals: D, lower quartile (<25%); C, interquar-
tile (25–50%); B, interquartile (50–75%); A, upper quartile
(>75%) (Figure 4B). As an example, the H3K4me3 profile
derived from 10 007 440 TMRs [arrow (3) in Figure 4A]
classified as ‘triple A’ profile, while nonenriched WCE
profiles were, as expected, of the lowest possible quality,
‘triple D’ (Figure 4C). Similarly expected was the high QC
performance of RNA-seq, which does not involve the
complex experimentation and immunoprecipitation pro-
cedures as ChIP-seq, and consequently received ‘triple A’
rating [arrow (1) in Figure 4A]. Note that these ratings are
meant to provide a simplified view of the evaluated profile’s
robustness but not to replace the QCis, which provide more
specific information.

As the quality of a ChIP-seq profile is the direct conse-
quence of a rather large number of factors (e.g. cross-
linking efficiency, chromatin shearing, antibody affinity
and selectivity, variability between experiments, experi-
menters and platforms), the QCis cannot per se identify
the source for the bad quality of a given profile. However,
it does allow identifying data sets of divergent quality,
which cannot be compared with each other, even though
they might have been generated under similar conditions.
Importantly, in contrast to current practice, the sequencing
depth applied for generating NGS profiles is a tunable par-
ameter to generate profiles of similar quality. As illustrated
in Figures 3 and 5 for similar TMR levels, H4K20me1 or
H3K36me3 profiles display in general poorer quality than
those of H3K27ac or H3K4me3. However, increasing the
sequencing depth will improve their quality descriptors to
attain comparable levels, such that, for example, only
‘triple A’ data sets can be compared (Figure 5). In this
respect, we believe that the QCi database will become an
important reference to perform a priori predictions of the
minimal sequencing depth required for a given target to
reach a predefined quality.

The NGS-QCis in the context of previously described
working standards and guidelines for ChIP-seq assays

Multidimensional comparative analyses of ChIP-seq
profiles require prior quality assessment. Currently, this
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is done by visual inspection of profiles in a genome
browser (for instance by evaluating the pattern in
regions previously described as containing a chromatin
enrichment) and complemented peak caller predictions
based on (some) user-defined parameters.

In addition to visual inspection, analytical methods have
been developed with the aim of providing quantitative
quality assessments of NGS-generated profiles [for a
recent summary of the methodologies used by the
ENCODE consortium see (22)]. Methods like FRiP (23)
or IDR (24) require prior use of peak calling algorithms for
evaluation and are therefore dependent on peak-calling
performance of a given tool with the user-defined param-
eters. Consequently, they cannot be easily used for multi-
profile comparisons when different peak callers are
required. This is for example the case when transcription

factor profiles are compared with epigenetic profiles that
display broad RCI patterns. Note that the IDR approach
can only be used when replicate profiles are available,
which is strongly suggested but not a routine procedure
(see GEO entries). Furthermore, the criteria used for repro-
ducibility by the IDR analysis can be misleading in cases
where compared profiles present broad enrichment
patterns (Supplementary Figure S6; see also below).
Two other methods; signal distribution skewness (34)

and strand cross-correlation analysis (SCC) (22) operate
in a peak caller-independent manner. Signal distribution
skewness evaluates the asymmetry of genome-wide tag-
count distribution, while SCC measures the quality of
evaluated ChIP-seq profiles from the sequence tag
density on forward and reverse strand reads at target
sites. SCC is thus applicable mainly, if not exclusively,

Figure 4. A universal NGS-QCi database for comparative analysis. (A) Cloud of NGS-QCis for multiple profiles present in the NGS-QCi database
(http://igbmc.fr/Gronemeyer_NGS_QC). Density (left) and similarity (right) QCis are displayed relative to the TMRs; color codes are indicated at
the right. QCis of input (WCE) profiles are displayed as black circles; the dashed line is the corresponding fitted curve. Arrows indicate the location
of the data sets specified in (C). (B) QCis of the evaluated NGS profiles displayed in (A) are expressed in a single term, QC-STAMP, and represented
as boxplots for different RCI dispersion intervals (2.5, 5 and 10%). Discrete quality grades ‘A’ to ‘D’ were associated with different quantiles
(QC-STAMP dist> 75%; >75% QC-STAMP dist> 50%; >50% QC-STAMP dist> 25%; QC-STAMP dist< 25% associated to A, B, C and D
qualitative indicators, respectively). (C) Examples of NGS profiles associated to different QC-STAMPs.
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Figure 6. Comparison of QCi-STAMP performance with other analytical methodologies. (A) A set of four biological duplicates was selected from
publicly available CTCF ChIP-seq profiles (pairs are enhanced by color code) and their corresponding QCi-STAMP descriptors were inferred (‘A’ for
highest and ‘D’ for lowest quality). (B) The skewness of the read-count signal distribution of the biological replicates compared with the predicted
QCi-STAMP (dRCI� 5%). Note that the QCi-STAMP descriptors discriminate between data set (3) and (4), while their skewness evaluation does
not. (C) Significant binding sites were predicted by MACS (default P-value threshold: 1� 10�5) and classified based on their overlap between CTCF
replicates (common and unique sites). Common sites were assessed by accepting up to 40-nt distance between MACS-predicted summits. (D) ‘IDR’
among CTCF replicates assessed by sorting significant binding sites according to the corresponding P-value. Note that in agreement with the QCi-
STAMP descriptors, but differing with the skewness analysis (see panel C), data sets (3) and (4) present the worst IDR, while data sets (5) and (6)
present the best IDR pattern.

Figure 5. Meta-analysis illustrating the influence of the sequencing depth on the density and similarity QCis. Meta-analysis performed by compiling
several profiles and subsequently sampled at defined TMRs ranging from 20 to 180 million. For each resampled subset the corresponding QCis were
computed and displayed in spider-web charts, in which denQCi and simQCi are displayed for different dRCI thresholds (color-coded as indicated
at the top left). QC-STAMPs have been associated to the evaluated profiles as illustrated. Note that for H4K20me1 sequencing depths of up to
60 million reads are required to obtain a ‘triple A’ grade, while H3K27ac and H3K4me3 receive this grade with 20 million TMRs.
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to ‘sharp’ patterns like those observed for transcription
factor ChIP-seq data sets. It is rather evident that SCC
cannot be used for quality assessment of broad patterns,
as significantly enriched reads of such profiles cover large
areas. Thus, from the conceptual point of view in addition
to the present QCi system, signal distribution skewness
appears to constitute the only other universal quality
measurement method. To compare signal distribution
skewness and our NGS-QC we have evaluated the
degree of skewness in four publicly available CTCF
ChIP-seq data sets (each of them represented by two
biological replicates) and compared it with QCi-STAMP
(Figure 6A and B). Both methods provide similar quality
predictions, with the important exception that the
difference in quality of one pair of the evaluated
replicates (GSM646372 and GSM646373 data sets) was
predicted by the QCi-STAMP but not by the skewness
analysis (Figure 6B). To understand the origin of this
discrepancy, we assessed the number of common and
unique sites for each pair of replicate data sets [peak
caller MACS (27); default P-value threshold conditions:
1� 10�5), followed by IDR analysis for the predicted
binding sites (Figure 6C and D, respectively).
Interestingly, this complementary analysis revealed a
lower number of significant common sites for replicate
GSM646372 (‘triple C’) and GSM646373 (‘triple B’)
than for the other replicate data sets. This IDR-defined
differential quality of the two pairs of replicates was
equally well detected by the QCi-STAMP (but not the
skewness) approach. Overall, these comparisons show
that QCi-STAMP provides a more versatile and reliable
quality discrimination of NGS-generated profile than the
skewness approach. Moreover, in contrast to IDR, QCi-
STAMP reveals which of the replicates should be repeated
to increase the overall quality without the necessity of
using peak caller approaches.

An additional limitation of the IDR analysis, namely
the dependence on peak caller performance, becomes
apparent from analysing CTCF (Figure 6; sharp peaks)
and H3K4me3 data sets (Supplementary Figure S6;
broad peaks). While IDR analysis of CTCF can be done
with 40 nt summit distance overlaps (i.e. the maximal
distance between predicted summits to consider two
binding events as reproduced), such conditions are nonin-
formative for the H3K4me3 data set. To overcome this
limitation, larger summit distance thresholds (e.g. 500 nt)
have to be used to get informative results (Supplementary
Figure S6). It is thus unlikely that comparisons between
ChIP-seq profiles presenting different enrichment patterns
can be done with IDR. In contrast, the QCi-STAMP
reliably predicts the different qualities for the ‘triple A’
and ‘triple B’ pair of replicates and the common quality
for the two ‘triple B’ replicates in the case of the evaluated
H3K4me3 data sets (Supplementary Figure S6A), as
illustrated for the CTCF profiles (Figure 6A).

DISCUSSION

The assessment of the quality of ChIP-seq data sets has
been mostly performed by visual inspection in a genome
browser and/or by the capacity of peak/island/pattern

caller algorithms to predict locally enriched sequence
counts. In both cases, it is a rather subjective analysis
relying on user-defined criteria, such as the choice of ‘rep-
resentative’ regions or thresholds for peak detection, and
the statistical models and/or parameters used for assess-
ment of enriched patterns. Only recently, methods are
being developed that aim at providing a quantitative
measure for the quality of ChIP-seq assays but so far
there is no tool that provides a universal quality assess-
ment for past and present NGS-generated profiles.
The present NGS-QC approach provides quantitative

QCis generated from the evaluation of a feature
common to all NGS-generated profiles, namely the
profile construction from sequenced read overlaps.
Conceptually, the QC Generator interrogates the robust-
ness of such a profile when fewer sequenced reads
are available, irrespective of the underlying experimen-
tal approach; simplistically this can be described as a
numerical analysis similar to the visual inspection of
Figure 2A, which displays RCIs at different TMRs but
for the entire genome-aligned profile and not only for a
selected region.
This concept has an inherent universal dimension,

which is essential for comparative purposes and consider-
ing that the public GEO repository represents a powerful
source for performing in silico data set comparisons, we
have established a database of QCis for >5600 profiles.
Our ultimate goal is to cover all publicly available ChIP-
seq and enrichment-related NGS data sets to provide a
comprehensive QCi library to the scientific community.
Moreover, we invite all our colleagues to use the QC
Generator for evaluation of their own profiles and
suggest that all newly reported IP-based NGS profiles
(which show the largest variability) are provided with
the corresponding global QCis. We also invite the com-
munity to import all newly defined QCis into the global
QCi database. Collectively, this database will be a highly
valuable source of information about the quality that can
be achieved, for example, for ChIP-seq of a certain target
with a given (batch of) antibodies.
We believe that the universality, together with its sim-

plicity and broad accessibility, makes the present system
an attractive tool for QC analysis of profiles before
engaging peak detection algorithms. Once a profile has
been QCed, the QC descriptors provide objective numer-
ical criteria to any NGS-generated profile that is provided
to the community. Thus, existing profiles can be compared
with others in multidimensional studies and meta-
analyses.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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Organismes Cancer (ITMO Cancer).

Conflict of interest statement. A patent application
(EP123406478.4) describing the use of the NGS-QC
system has been filed and the software has been deposited
at the Agence Pour le Protection des Programmes (Paris).

REFERENCES

1. Harris,R.A., Wang,T., Coarfa,C., Nagarajan,R.P., Hong,C.,
Downey,S.L., Johnson,B.E., Fouse,S.D., Delaney,A., Zhao,Y.
et al. (2010) Comparison of sequencing-based methods
to profile DNA methylation and identification of
monoallelic epigenetic modifications. Nat. Biotechnol., 28,
1097–1105.

2. Laird,P.W. (2010) Principles and challenges of
genomewide DNA methylation analysis. Nat. Rev. Genet., 11,
191–203.

3. Ceschin,D.G., Walia,M., Wenk,S.S., Duboe,C., Gaudon,C.,
Xiao,Y., Fauquier,L., Sankar,M., Vandel,L. and Gronemeyer,H.
(2011) Methylation specifies distinct estrogen-induced
binding site repertoires of CBP to chromatin. Genes Dev., 25,
1132–1146.

4. Sims,R.J. III, Rojas,L.A., Beck,D., Bonasio,R., Schuller,R.,
Drury,W.J. III, Eick,D. and Reinberg,D. (2011) The C-terminal
domain of RNA polymerase II is modified by site-specific
methylation. Science, 332, 99–103.

5. Park,P.J. (2009) ChIP-seq: advantages and challenges of a
maturing technology. Nat. Rev. Genet., 10, 669–680.

6. Law,J.A. and Jacobsen,S.E. (2010) Establishing, maintaining and
modifying DNA methylation patterns in plants and animals.
Nat. Rev. Genet., 11, 204–220.

7. Margueron,R. and Reinberg,D. (2010) Chromatin structure and
the inheritance of epigenetic information. Nat. Rev. Genet., 11,
285–296.

8. Ernst,J. and Kellis,M. (2010) Discovery and characterization of
chromatin states for systematic annotation of the human genome.
Nat. Biotechnol., 28, 817–825.

9. Ernst,J., Kheradpour,P., Mikkelsen,T.S., Shoresh,N., Ward,L.D.,
Epstein,C.B., Zhang,X., Wang,L., Issner,R., Coyne,M. et al.
(2011) Mapping and analysis of chromatin state dynamics in nine
human cell types. Nature, 473, 43–49.

10. Wang,Z., Gerstein,M. and Snyder,M. (2009) RNA-Seq: a
revolutionary tool for transcriptomics. Nat. Rev. Genet., 10,
57–63.

11. Mamanova,L., Andrews,R.M., James,K.D., Sheridan,E.M.,
Ellis,P.D., Langford,C.F., Ost,T.W., Collins,J.E. and Turner,D.J.
(2010) FRT-seq: amplification-free, strand-specific transcriptome
sequencing. Nat. Methods, 7, 130–132.

12. Wang,Z., Zang,C., Cui,K., Schones,D.E., Barski,A., Peng,W. and
Zhao,K. (2009) Genome-wide mapping of HATs and HDACs
reveals distinct functions in active and inactive genes. Cell, 138,
1019–1031.

13. Ozsolak,F. and Milos,P.M. (2011) RNA sequencing: advances,
challenges and opportunities. Nat. Rev. Genet., 12, 87–98.

14. Hah,N., Danko,C.G., Core,L., Waterfall,J.J., Siepel,A., Lis,J.T.
and Kraus,W.L. (2011) A rapid, extensive, and transient
transcriptional response to estrogen signaling in breast
cancer cells. Cell, 145, 622–634.

15. Ingolia,N.T. (2010) Genome-wide translational profiling
by ribosome footprinting. Methods Enzymol., 470, 119–142.

16. Lieberman-Aiden,E., van Berkum,N.L., Williams,L., Imakaev,M.,
Ragoczy,T., Telling,A., Amit,I., Lajoie,B.R., Sabo,P.J.,
Dorschner,M.O. et al. (2009) Comprehensive mapping of
long-range interactions reveals folding principles of the
human genome. Science, 326, 289–293.

17. Fullwood,M.J., Liu,M.H., Pan,Y.F., Liu,J., Xu,H.,
Mohamed,Y.B., Orlov,Y.L., Velkov,S., Ho,A., Mei,P.H. et al.
(2009) An oestrogen-receptor-alpha-bound human chromatin
interactome. Nature, 462, 58–64.

18. Yaffe,E. and Tanay,A. (2011) Probabilistic modeling of Hi-C
contact maps eliminates systematic biases to characterize
global chromosomal architecture. Nat. Genet., 43, 1059–1065.

19. Down,T.A., Rakyan,V.K., Turner,D.J., Flicek,P., Li,H.,
Kulesha,E., Graf,S., Johnson,N., Herrero,J., Tomazou,E.M. et al.
(2008) A Bayesian deconvolution strategy for
immunoprecipitation-based DNA methylome analysis.
Nat. Biotechnol., 26, 779–785.

20. Weber,M., Davies,J.J., Wittig,D., Oakeley,E.J., Haase,M.,
Lam,W.L. and Schubeler,D. (2005) Chromosome-wide and
promoter-specific analyses identify sites of differential
DNA methylation in normal and transformed human cells.
Nat. Genet., 37, 853–862.

21. Core,L.J., Waterfall,J.J. and Lis,J.T. (2008) Nascent RNA
sequencing reveals widespread pausing and divergent initiation at
human promoters. Science, 322, 1845–1848.

22. Landt,S.G., Marinov,G.K., Kundaje,A., Kheradpour,P., Pauli,F.,
Batzoglou,S., Bernstein,B.E., Bickel,P., Brown,J.B., Cayting,P.
et al. (2012) ChIP-seq guidelines and practices of the
ENCODE and modENCODE consortia. Genome Res., 22,
1813–1831.

23. Ji,H., Jiang,H., Ma,W., Johnson,D.S., Myers,R.M. and
Wong,W.H. (2008) An integrated software system for
analyzing ChIP-chip and ChIP-seq data. Nat. Biotechnol., 26,
1293–1300.

24. Li,Q., Brown,J.B., Huang,H. and Bickel,P.J. (2011) Measuring
reproducibility of high-throughput experiments. Ann. Appl. Stat.,
5, 1752.

25. Barrett,T., Wilhite,S.E., Ledoux,P., Evangelista,C., Kim,I.F.,
Tomashevsky,M., Marshall,K.A., Phillippy,K.H., Sherman,P.M.,
Holko,M. et al. (2013) NCBI GEO: archive for
functional genomics data sets—update. Nucleic Acids Res., 41,
D991–D995.

26. Langmead,B. and Salzberg,S.L. (2012) Fast gapped-read
alignment with Bowtie 2. Nat. Methods, 9, 357–359.

27. Zhang,Y., Liu,T., Meyer,C.A., Eeckhoute,J., Johnson,D.S.,
Bernstein,B.E., Nusbaum,C., Myers,R.M., Brown,M., Li,W. et al.
(2008) Model-based analysis of ChIP-Seq (MACS). Genome Biol.,
9, R137.

e196 Nucleic Acids Research, 2013, Vol. 41, No. 21 PAGE 12 OF 13

Downloaded from https://academic.oup.com/nar/article-abstract/41/21/e196/1280676
by UNIVERSITE LOUIS PASTEUR SERVICE COMMUN DE DOCUMENTATION user
on 06 February 2018



28. Reiss,D.J., Facciotti,M.T. and Baliga,N.S. (2008) Model-based
deconvolution of genome-wide DNA binding. Bioinformatics, 24,
396–403.

29. Kharchenko,P.V., Tolstorukov,M.Y. and Park,P.J. (2008)
Design and analysis of ChIP-seq experiments for DNA-binding
proteins. Nat. Biotechnol., 26, 1351–1359.

30. Rozowsky,J., Euskirchen,G., Auerbach,R.K., Zhang,Z.D.,
Gibson,T., Bjornson,R., Carriero,N., Snyder,M. and
Gerstein,M.B. (2009) PeakSeq enables systematic scoring of
ChIP-seq experiments relative to controls. Nat. Biotechnol., 27,
66–75.

31. Goecks,J., Nekrutenko,A. and Taylor,J. (2010) Galaxy: a
comprehensive approach for supporting accessible, reproducible,
and transparent computational research in the life sciences.
Genome Biol., 11, R86.

32. Blankenberg,D., Von Kuster,G., Coraor,N., Ananda,G.,
Lazarus,R., Mangan,M., Nekrutenko,A. and Taylor,J. (2010)
Galaxy: a web-based genome analysis tool for experimentalists.
Curr. Protoc. Mol. Biol., Chapter 19, Unit 19 10 11–21.

33. Giardine,B., Riemer,C., Hardison,R.C., Burhans,R., Elnitski,L.,
Shah,P., Zhang,Y., Blankenberg,D., Albert,I., Taylor,J. et al.
(2005) Galaxy: a platform for interactive large-scale genome
analysis. Genome Res., 15, 1451–1455.

34. Ho,J.W., Bishop,E., Karchenko,P.V., Negre,N., White,K.P. and
Park,P.J. (2011) ChIP-chip versus ChIP-seq: lessons
for experimental design and data analysis. BMC Genomics,
12, 134.

PAGE 13 OF 13 Nucleic Acids Research, 2013, Vol. 41, No. 21 e196

Downloaded from https://academic.oup.com/nar/article-abstract/41/21/e196/1280676
by UNIVERSITE LOUIS PASTEUR SERVICE COMMUN DE DOCUMENTATION user
on 06 February 2018


