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Abstract

Background: Chromatin immunoprecipitation combined with massive parallel sequencing (ChIP-seq) is widely
used to study protein-chromatin interactions or chromatin modifications at genome-wide level. Sequence reads
that accumulate locally at the genome (peaks) reveal loci of selectively modified chromatin or specific sites of
chromatin-binding factors. Computational approaches (peak callers) have been developed to identify the global
pattern of these sites, most of which assess the deviation from background by applying distribution statistics.

Results: We have implemented MeDiChISeq, a regression-based approach, which - by following a learning process -
defines a representative binding pattern from the investigated ChIP-seq dataset. Using this model MeDiChISeq
identifies significant genome-wide patterns of chromatin-bound factors or chromatin modification. MeDiChISeq has
been validated for various publicly available ChIP-seq datasets and extensively compared with other peak callers.

Conclusions: MeDiChI-Seq has a high resolution when identifying binding events, a high degree of peak-
assessment reproducibility in biological replicates, a low level of false calls and a high true discovery rate when
evaluated in the context of gold-standard benchmark datasets. Importantly, this approach can be applied not only
to ‘sharp’ binding patterns - like those retrieved for transcription factors (TFs) - but also to the broad binding patterns
seen for several histone modifications. Notably, we show that at high sequencing depths, MeDiChISeq outperforms
other algorithms due to its powerful peak shape recognition capacity which facilitates discerning significant binding
events from spurious background enrichment patterns that are enhanced with increased sequencing depths.
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Background
Chromatin immunoprecipitation (ChIP) combined with
high throughput sequencing is widely used for character-
izing the genome-wide association pattern of chromatin-
interacting factors and histone or DNA modifications,
for which selective tools for affinity purification, mostly
antibodies, exist. While ChIPed DNA was first analysed
at genome-wide level by hybridization to genomic tiling
arrays (also known as ChIP-on-chip or ChIP-chip), dir-
ect sequencing is generally used these days (referred to
as ChIP-seq). Massive parallel sequencing has overcome
several limitations of the array-based (ChIP-chip) ap-
proach; such as spatial resolution, signal-to-noise ratio,
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dye and the probe-dependent hybridization biases and
costs (for a detailed comparison of the two approaches
see [1]); thus ChIP-seq is becoming the method of
choice for mapping protein-chromatin interactions and
chromatin modifications at global level.
Irrespective of whether ChIP-chip or ChIP-seq is used,

the aim of the corresponding data analysis is to identify
patterns in the reconstructed signal profiles that reflect
the bona fide enrichment of the factor/modification of
interest across the entire genome. Several pattern recon-
struction methodologies have been described to date
using approaches based on different concepts to define
what constitutes an enrichment event or peak. The sim-
plest concept defines an enrichment region based on a
user-chosen read count intensity threshold [2,3]. Other
methodologies evaluate background levels from control
(non-enriched) datasets to assess enrichment confidence
p-values in the chromatin immuno-precipitated (ChIP)
profile from a binomial distribution model [4,5]. In the
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same manner, when no control samples are available, the
background is usually estimated from a Poisson distribu-
tion model [4,6,7].
In the last years another group of peak callers was de-

veloped which use the signal enrichment dependency in
a spatial context to discover significant binding events
[8-11]. Importantly, this new family of peak callers de-
fines significant binding events from the consecutive
behaviour of enriched and non-enriched regions by ap-
plying Hidden Markov models (HMM), thus assessing
its significance from enrichment properties rather than
describing only differences relative to the background.
Finally, a new generation of peak callers exploits the

properties of expected binding patterns. Among them,
PeakRanger complements the use of the background
modelling by using in a second round a “summit-valley-
alternator” algorithm to scan for significant summits
[12]. Others assess the shape of the observed binding
patterns either by applying topological tree-based statis-
tics [13], or by elucidating properties of the forms asso-
ciated to the enrichment profiles [14].
Here we introduce MeDiChISeq, a model-based de-

convolution approach, originally developed to evaluate
ChIP-chip profiles [15]. Importantly, MeDiChISeq takes
advantage of the shape of the binding event itself as a re-
source for identifying them in an accurate manner; thus
by providing a higher power of discrimination between
true binding events and artifactual read-count enrich-
ment patterns. MeDiChISeq computes a model from a
selected subset of the multiple binding events that con-
stitute a genome-wide profile; then, this model is used as
a deconvolution kernel to predict global binding/modifi-
cation events, which are further validated by applying a
non-parametric bootstrapping approach. The perform-
ance of MeDiChISeq has been compared with various
other peak callers that are representative of the different
approaches currently used to define significant binding
events in ChIP-seq profiles.

Implementation
MeDiChISeq is based on MeDiChI, a model-based
deconvolution method designed for the analysis of
ChIP-chip datasets [15] to which an important number
of novel implementations have been added to enable the
analysis of datasets generated by massive-parallel se-
quencing. Specifically, while the regression-based calcu-
lator embedded on MeDiChI is essentially the same in
MeDiChISeq (see Additional file 1), the major novel
implementations incorporated for transforming MeDi-
ChI into a Peak caller dedicated to the analysis of ChIP-
Seq datasets comprise (1) the preprocessing of mapped
sequence files to generate read-count intensity files com-
patible with MeDiChI readout; (2) the enhancement of
the peaks’ confidence assessment by including local and
global background comparisons as well as the use of
input control datasets when available and (3) the
implementation of a multicore processing structure to
accommodate computation requirements observed when
MeDiChI was applied to larger genomes than those that
have been used for its release. These novel implementa-
tions are described below in more detail.

ChIP-seq datasets
MeDiChISeq processes mapped sequence files in differ-
ent formats (e.g. BED, BAM). Read-count intensity
profiles are reconstructed from mapped read files by
elongating each read to a user-defined length (default
read elongation: 150nt) and counting the elongated read
overlaps within a defined window (default wiggle-format
files resolution: 10nt). While the read elongation param-
eter is generally provided by the user, we have incorpo-
rated in MeDiChISeq a function that predicts a suitable
read elongation from the information retrieved in the
ChIP-seq profile itself (see Additional file 2 and below).
In ChIP-chip the reconstructed signal intensity is gen-

erated by comparing the immunoprecipitated informa-
tion (IP) with the control dataset, while in ChIP-seq the
IP and control datasets are processed separately. There-
fore, MeDiChISeq takes as an additional file (when avail-
able) a control dataset for improving the confidence
assessment of the identified binding events (see below).

Establishing a representative binding pattern by applying
an iterative learning process
One of the main advantages of MeDiChISeq is its
capacity of inferring a representative binding pattern
(referred to as “kernel”) from the provided ChIP-Seq
dataset. As illustrated in the Additional file 3, this is per-
formed by fitting a binding pattern model to a reduced
number of genomic regions, which are selected by apply-
ing a read-count intensity cutoff criterion. This cutoff
can be defined as a given read-count intensity or by a
quantile intensity parameter.
Model fitting is performed in an iterative manner by

evaluating in each round the number of peaks that fit
the best to the current model and adjusting its parame-
ters (shape and scale of Gamma distribution) by minim-
izing the regression residuals. The formalism of this
procedure is extensively described in [15] and its imple-
mentation for ChIP-seq datasets is detailed in the
Additional file 1.

Sequenced reads elongation parameter inferred from
ChIP-seq strand-specific information
In ChIP-seq assays the reconstruction of factor binding/
chromatin modification profiles is currently performed
by applying a computational elongation of the sequenced
reads prior read-count intensities assessment. This
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elongation step is performed because each sequenced
read corresponds to the 5’-ends of the fragmented
immunoprecipitated chromatin. Importantly, the applied
elongation distance, which corresponds generally to
the fragmented chromatin length, is important for
proper assignment of a factor binding site or chromatin
modification.
While the read elongation parameter is generally pro-

vided by the user (based on the experimental condi-
tions), we have incorporated in MeDiChISeq a function
that could predict a suitable read elongation from the in-
formation retrieved in the ChIP-seq profile itself. In fact,
while previous studies assessed the read elongation dis-
tance by evaluating the distance between the forward
and reverse enriched reads [7], MeDiChISeq applies the
iterative linear regression model fitting in a strand-
specific manner without read elongation. This prelimin-
ary step infers the DNA fragment length per strand
(ideally both strand-specific fragment lengths are the
same); subsequently these are combined to define the
read elongation parameter (see Additional file 2).

Genome-wide identification of significant binding events
by using the modeled representative binding pattern
(kernel)
Binding site identification by MeDiChISeq is based on
the assumption that all binding patterns associated to a
given immunoprecipitation assay might present similar
peak shape characteristics. Thus, the representative
binding pattern or kernel modeled by the iterative re-
gression approach is used to deconvolve binding events
over the entire ChIP-seq profile. For this, the dataset is
subdivided into overlapping windows (default parameter
20,000 nt window length; a contiguous window overlap
is defined to cover at least one peak length) and the pre-
computed kernel is used to identify those enrichment
patterns that fit best.
Like in the case of MeDiChI, the likelihood of an enrich-

ment event to match the trained kernel is related to the
ChIP-seq background and is estimated by applying a
non-parametric bootstrap approach [15]. MeDiChISeq
compares for this purpose the putative binding sites iden-
tified by kernel fitting with the “kernel-fitting residuals”
(i.e., those not complying with the model, and correspond-
ing to the background). Moreover, these residuals are fur-
ther deconvolved to identify potential patterns that would
match with the operative kernel despite their possible
background characteristics. Finally, each putative binding
site is compared with its surrounding background in a
local (default size of this centered surrounding windows is
5,000; 10,000 and 15,000nt) and global (genome-wide
background) context.
The use of three different window sizes facilitates clas-

sifying the surrounding of potential binding sites as
background. MeDiChISeq provides to each identified
binding site local confidence p-values for all three evalu-
ated windows and a global p-value. To provide an over-
all confidence estimate based on both global and local
p-values, these descriptors were combined into a single
confidence indicator (Fisher’s combined probability test).
When available, a control dataset (e.g., non-enriched

sample or IP with non-specific IgG) is included during
the binding site assessment. Indeed, whenever an enrich-
ment event matches with the trained kernel, the kernel-
fitting process is also performed in the control dataset
for the corresponding genomic region. If in a given
chromatin region both the enrichment and the control
dataset comply with the trained kernel, the confidence
of the identified binding site in the immunoprecipitated
dataset is corrected as follows:

ConfidenceThreshold CTð Þ ¼ –log p‐valueIP
� �

�IntensityIP– –log p‐valueControl
� � � IntensityControl� �

This approach enhances the confidence of the pre-
dicted binding event by evaluating its uncertainty from
different perspectives, namely relative to a local back-
ground, relative to the identified patterns across the gen-
ome (global background) and relative to the enrichment
seen in the control sample. Note that the described con-
trol sample-based confidence correction is based on the
assumption that the compared datasets (IP and control)
present comparable sequencing depth levels. It is im-
portant to mention that some methodologies apply in
case of divergent sequencing depths linear scaling cor-
rections; however we have shown in a previous study
that important differences in sequencing depths may
give rise to non-linear differences between compared
datasets [16].
In contrast to other methods, we do not suggest a de-

fault p-value threshold but provide a comprehensive list
of all identified binding sites (complying with the kernel
fitting) and their associated confidence descriptors such
that the user can chose the optimal confidence thresh-
old. In fact, defining a default p-value threshold may be
misleading for inexperienced users, who may consider
such reference as a gold standard rather than evaluating
by other approaches the degree of false calls for a given
p-value. Instead, we propose a graphical approach for
estimating p-value levels, which may preferentially be
associated to background behavior (described in the
MeDiChISeq vignette; Additional file 4).

MeDiChISeq implementation and performance
MeDiChISeq has been implemented in R and is designed
to operate by multicore processing to accommodate
computation requirements during linear regression fit-
ting and bootstrapping.
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For users who are interested in evaluating sites identi-
fied by another peak caller, MeDiChISeq offers an option
in which only defined regions can be deconvolved. The
R package, vignette and manual of MeDiChISeq are
available as additional files (Additional files 4, 5 and 6).
Note that these files can also be downloaded from our
homepage http://igbmc.fr/Gronemeyer_MeDiChISeq.

Results and discussion
In this study the performance of MeDiChISeq has been
evaluated with a large number of publicly available
ChIP-seq datasets. These include the TFs SRF, MAX,
NRSF [17] and the sequence-specific insulator protein
CTCF [18], all of which present sharp peaks in their
ChIP-seq profiles. Moreover, also broad patterns charac-
teristic of some histone modifications, such as histone
H3 lysine 4 trimethylation (H3K4me3), and lysine 9
(H3K9Ac) or lysine 27 (H3K27Ac) acetylation, were also
included using published data sets [18]. Importantly,
MeDiChISeq performance was compared to three other
peak callers, which are representatives of the different
methodologies implemented over the years: MACS
models the background according to a Poisson distribu-
tion [7], BayesPeak takes advantage of a fully Bayesian
hidden Markov model to identify binding events [10],
and PeakRanger applies in addition to background mod-
elling, in a second round a “summit-valley-alternator”
algorithm to scan for significant summits [12]. The rele-
vant parameters in which each peak caller has been used
are provided in the Additional file 7. As illustrated in
Figure 1A, all four peak callers predict a variable number
of significant peaks when default confidence threshold
conditions are used (MACS: p-value < 1×10-5; Baye-
sPeak: posterior probability or PP > 0.5; PeakRanger:
p-value < 1×10-4, FDR < 0.01; MeDiChISeq: no confi-
dence cutoff; instead the number of peaks complying
with the kernel are given) suggesting a priori that default
parameters may have to be optimized for comparative
studies (see also [19]). In general, we observed that Peak-
Ranger and MACS display a more conservative behav-
iour than MeDiChISeq and BayesPeak when comparing
the total number of predicted peaks. Note that the num-
ber of MeDiChISeq sites corresponds to those comply-
ing with the kernel fitting and have not been filtered by
any other threshold criterion. Even more importantly,
differences in the number of sites identified by each peak
caller are observed also with biological replicates, which
likely reflect inherent differences in the characteristics of
each of such datasets. Note that in the present study we
considered only ChIP-seq profiles that were published as
biological replicates.
To compare commonly identified sites we used the

predicted peak summits ±50nt flanking sequences; as
BayesPeak does not specify summits, the centre of the
predicted peak base was used. This comparison revealed
that MeDiChISeq identified the majority of sites pre-
dicted by the other methods (Figure 1B, Additional
file 8). Notably, when comparing the fraction of peaks
shared among peak callers MeDiChISeq performs best
for both sharp and broad binding patterns (CTCF and
H3K4me3), while most of the other peak callers present
significantly lower fractions of shared peaks, as seen for
H3K4me3 (Figure 1B). This observation correlates with
the high number of MeDiChISeq-identified sites relative
to the other peak callers resulting from the efficient de-
convolution by MeDiChISeq. In fact, as illustrated in
Figure 1C, MeDiChISeq annotated 8 distinct loci of
H3K4me3 chromatin modifications, where the other
peak callers identified one, two or three sites. We noted
that these differences in the deconvolution potential of
peak callers were less pronounced for sharp binding pat-
terns (Figure 1C, left panel).

MeDiChISeq’s sensitivity evaluated by their performance
in reproducibility assays
Figure 1 illustrates that a comparison of peak caller per-
formances under default parameters is unsatisfactory. In
fact, default confidence thresholds that are too relaxed
will increase the amount of false positive calls, while too
stringent conditions will produce false negatives. To cir-
cumvent this problem, peak caller performance can be
evaluated in the context of reproducibility assays by
comparing binding site predictions for biological repli-
cates and ranking them according to confidence descrip-
tors. The underlying assumption is that true binding
sites will be retrieved in both replicate datasets within a
similar confidence ranking, while low confidence peaks,
which are expected to contain also false positives, will
show lower consistency in the reproducibility assay. The
consistency between ranked peak confidence descriptors
was previously formalized based on a copula mixture
model, which estimates the probability that each pair of
peaks is reproducible. This probability was described as
“Irreproducibility Discovery Rate (IDR) [20] and has
been used by the ENCODE consortium to identify a
transition from signal to noise when peak caller binding
site predictions were evaluated [21].
Here we have compared peak caller performance in

the context of reproducibility across replicate ChIP-seq
datasets. Importantly, MeDiChISeq showed the highest
number of reproducible peaks in CTCF and NRSF ChIP-
seq datasets (Figure 2A). Also for broader patterns like
H3K27ac and H3K4me3 MeDiChISeq identified the
highest number of reproducible peaks at acceptable IDR
thresholds (e.g., 0.1 or 90% reproducible discovery). Note
that the IDR progression curve for the histone modifica-
tion mark H3K4me3 continues to increase rather slowly
above this threshold, suggesting retrieval of an important

http://igbmc.fr/Gronemeyer_MeDiChISeq


Figure 1 MeDiChISeq performance evaluated in the context of several ChIP-seq datasets and relevant Peak calling algorithms.
(A) MeDiChISeq and three other peak callers (MACS, BayesPeak and PeakRanger) were used to identify binding events in ChIP-seq datasets for
three TFs (SRF, MAX, NRSF), the sequence-specific insulator protein CTCF and two histone modification marks (H3K9Ac, H3K27Ac, H3K4me3). The
default confidence threshold parameters described for each peak caller were applied to assess the number of peaks per dataset. Note that for
each ChIP-seq two biological replicates were processed. (B) Peaks commonly identified by two of the indicated peak callers for two replicates of
CTCF (top panel) and H3K4me3 (bottom panel) are displayed as percentages of the total sites found by a given method (indicated at the right).
(C) Representative genome browser screenshots illustrating the ability to deconvolve binding/modification patterns of peak callers. Note that
most of the peak callers identify a similar number of “sharp” binding events for CTCF, while MeDiChISeq has the highest potential of deconvolution for
the H3K4me3 pattern.
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number of irreproducible events among the significant
top-ranked peaks in the replicate dataset. That the other
peak callers identify less than 5,000 H3K4me3 peaks
with IDR levels below 10% supports the view that for
broader binding patterns the assessment of IDRs by ap-
plying standard approaches becomes suboptimal [20].
An important limitation of the above analysis is the

potential variability between compared biological repli-
cate datasets, as technical differences between the
compared profiles may exist (e.g., sequencing depth
differences; Peak caller deconvolution performance
for broad patterns). To circumvent this limitation, we
treated the predictions of two peak callers as “virtual
replicates” for IDR analyses for a number of individual
ChIP-seq datasets (Figure 2B). We thus ask if two peak
callers identify binding events/marks in the same ChIP-
seq dataset with similar confidence (i.e., if a top ranked
peak of peak caller A is also top ranked by peak caller
B). This novel type of comparison demonstrated that
MeDiChISeq identifies higher numbers of reproducible
peaks when compared with other methods. In fact,
in the case of CTCF datasets, MeDiChISeq-MACS



Figure 2 Irreproducibility Discovery Rate (IDR) assays to compare peak calling algorithms. (A) IDR assay comparing biological replicate
datasets (see text for details). Note that for H3K4me3, MeDiChISeq continues to find significant common events in compared replicate datasets
with slowly increasing IDR while the IDRs sharply increase for the three other peak callers around 5,000 significant peaks commonly identified in
the replicates. (B) Similar reproducibility analysis but performed by pairwise comparison of binding site predictions by the different peak callers
indicated at the left (“virtual replicates”). This approach reflects the concordance in binding site identification between two peak callers. Note that
in all illustrated IDR assays, MeDiChISeq predictions have the lowest IDR levels for the highest number of significant binding sites. In (A) and (B)
dashed lines indicate IDR levels of 0.1; i.e. a reproducibility level of 90%.
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performed best for the first replicate, while MeDiChI-
Seq-PeakRanger won in the case of the second replicate
(Figure 2B). Importantly, evaluation of H3K27ac and
H3K4me3 ChIP-seq datasets by this approach revealed
large differences in reproducibility performance of the
peak callers. PeakRanger and BayesPeak systematically
performed worst, while MeDiChISeq versus any other
peak caller gave the best scores in either biological repli-
cate. Note that the particular IDR patterns observed for
H3K4me3 in an inter-replicate comparison (right panel
in Figure 2A) was not seen when the inter-peak caller
performance for each replicate dataset was compared
(right panels in Figure 2B), suggesting that it results
from significant divergence between the “biological
replicate datasets”. Overall these analyses showed that
MeDiChISeq systematically identified the most reprodu-
cible events among biological replicates and peak caller
annotations, thereby revealing the high sensitivity and
reliability of this approach.
MeDiChISeq’s specificity in the context of curated
benchmark datasets
In addition to identifying the highest number of true
binding events (sensitivity), a good peak caller algorithm
is expected to produce the lowest amounts of false posi-
tives (specificity). As indicated above, IDR studies are
expected to identify a transition from signal to noise
when evaluating peak callers’ binding sites reproducibil-
ity. In this manner, the highest number of significant
binding sites at the lowest IDR, as observed in the case
of MeDiChISeq performance (Figure 2), reflects a high
degree of sensitivity and specificity, at least in the con-
text of reproducible binding site discovery in biological
replicates or when comparing different peak callers’ per-
formance per ChIP-seq dataset.
Previous studies have evaluated peak caller perform-

ance to distinguish false positives from “true” binding
sites by using a manually curated collection of binding
regions (and “false” enrichment sites) that cover typical
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variation in peak size and appearance for the TFs NRSF,
SRF and MAX [14,17]. We have evaluated MeDiChISeq
in the context of this benchmark, demonstrating in all
three cases a high percentage of true binding site recov-
ery (> 80%) and low false discovery rate (Figure 3). It is
worth mentioning that, while its overall FDR perform-
ance is similar to that of MACS, MeDiChISeq generally
retrieves more true binding sites. Furthermore, while
Figure 3 Specificity and sensitivity of MeDiChISeq peak predictions co
mark dataset for MAX, SRF and NRSF [17] was used to assess the percentag
to the false discovery rate (FDR). For the two upper panels no background
show the same analysis but with considering the corresponding backgroun
not illustrated in the upper panels, as this algorithm does not perform IP b
tracings overlap, an arrow indicates the point of maximal recovery.
using a background control dataset affected the false dis-
covery rate of all other evaluated peak callers, MeDiChI-
Seq performed equally well in identifying true binding
events in presence and absence of this control. This is
most likely due to the fact that the binding site identifi-
cation relies on a pre-computed kernel and is thus less
affected by artifactual enrichment events. This perform-
ance is well illustrated in the case of NRSF datasets,
mpared with other algorithms. A manually curated ChIP-seq bench-
e of true site recovery by the indicated peak calling algorithms relative
control sample was used during peak calling. The two lower panels
d control dataset in the analysis. Note that PeakRanger performance is
inding site assessment without background control. In cases where the
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where in the absence of background control dataset,
MACS and MeDiChISeq present a maximal percent of
recovery of 90% but accompanied by high FDR levels
(>0.5). Importantly, the incorporation of background
control dataset in the analysis reduces the FDR levels
but the percentage of true site recovery is also compro-
mised for MACS (less than 80%), while MeDiChISeq
manages to keep the percentage of recovery levels up to
90% even under these conditions (FDR < 0.4).

Peak caller performance relative to sequencing depth
The rapid technological progress in the field of massive
parallel sequencing provided over the years sequencing
platforms with continuously increasing sequencing
depths. In fact, while the first versions of the Illumina
Genome analyzer had sequencing capacities in the range
of several millions reads, the latest Hiseq2000/2500 ver-
sions provides more than 3 billion reads per flow cell.
Following this continuous progress, the number of se-
quenced reads used per ChIP-seq assay has increased
considerably. In fact, while early ChIP-seq assays gener-
ated <4 million total mapped reads (TMRs), current
datasets comprise >20 million TMRs. Importantly, in-
creasing the sequencing depth increased also the num-
ber of discovered binding sites [5,22,23] but only a few
Figure 4 Performance of peak calling algorithms at different sequenc
(TMRs) were created from a CTCF dataset of 36,383,621 reads. Mapped read
the original dataset, as indicated in the panels. IDR assays comparing the p
peak-calling algorithms. (B) The number of reproducible peaks identified fo
sequencing depth. (C) Motif analysis performed with the reproducible bind
corresponding to 29,106,897 TMRs. As illustrated, more than 40% of these s
performed by CentriMO; p-value 4.4×10–1085) in the center of the predicted
studies evaluated the peak caller performance for condi-
tions with varying sequencing depths. Obviously, in-
creasing the sequencing depth will increase both the
signal and the noise levels, which could potentially affect
peak caller performance.
To address this question, we created a high density

ChIP-seq dataset by combining the datasets of the
two biological CTCF replicates. This meta-profile
comprised >36 M TMRs and was used for profile
reconstruction from subsets generated by random
sampling (80%; 60%; 40%; 20%; 10%; 5%) (Additional
file 9A). To perform IDR evaluation, pseudo replicates
were produced by two independent random samplings.
As expected, the CTCF profile reconstructed from <2 M
TMRs had unacceptably high IDR levels (Figure 4). In
this condition MeDiChISeq and PeakRanger performed
worst, followed by MACS and BayesPeak. This is readily
explained by the fact that both MeDiChISeq and Peak-
Ranger evaluate peak shapes, which are highly variable
at low TMR levels (see pseudo replicates at 1.8 M TMRs
in Additional file 9A). Importantly, with the increase in
the TMR levels peak shapes consolidate and the
performance of MeDiChISeq is enhanced accordingly
(Figure 4A). Indeed, above 14 M TMRs MeDiChISeq out-
performs all other peak callers with respect to the number
ing depth. (A) Pseudo-replicates with different total mapped reads
s were twice randomly sampled to obtain fractions of 5 to 80% of
seudo-replicate datasets were performed for the predictions of the four
r an IDR threshold of 10% (IDR < 0.1) is illustrated relative to the
ing sites specific to MeDiChISeq (when compared with MACS)
ites harbor a CTCF motif (top panel; Jaspar database comparison
peaks (bottom panel).
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of significant peaks with the lowest IDR levels. Note that
above this TMR level all peak callers tend to reach satur-
ation, a phenomenon generally referred to as the sequen-
cing depth beyond which the number of newly discovered
sites (in this case in a reproducible manner) reach a con-
stant level (i.e. between 30 to 40 thousand sites for IDR
levels lower than 0.1; Figure 4B).
This comparative study clearly demonstrates a direct

correlation between TMR size and the degree of repro-
ducible peak identification by any of the compared peak
callers. In addition, it shows that MeDiChISeq, and to a
certain degree also BayesPeak, tend to retrieve more re-
producible binding sites than MACS and PeakRanger.
This could be the direct consequence of different sensi-
tivities and/or specificities of the peak callers under
these conditions. To assess this issue we evaluated the ex-
tent of overlap between the retrieved sites by the different
methods relative to MeDiChISeq. This analysis demon-
strated that MeDiChISeq retrieved >88% of the binding
sites identified by the other methods, but predicted an
additional >10,000 specific sites (Additional file 9B).
These additional sites may originate from the use of the

stringent comparative conditions (summit overlap +/−50nts
distance). Indeed, a comparison between MACS and
MeDiChISeq revealed that > 4,000 of the 15,000
MeDiChISeq-specific sites overlapped with MACS
calls, when peak comparison settings were relaxed
(Additional file 10). The remaining 10,000 binding sites
that did not appear in the MACS-predicted site list
were further evaluated for the presence of the previ-
ously described CTCF motif. Importantly, more than
4,000 MeDiChISeq-specific sites (40%) contained a
CTCF motif, strongly suggesting that this population
corresponds to bona fide CTCF binding sites that
were ignored by MACS (Figure 4C). Of note, Peak-
Ranger and/or BayesPeak identified nearly 3,000 of
these bona fide CTCF binding sites (illustrated in
Additional file 10C, right panel).

Conclusions
Here we present MeDiChISeq, a model-based deconvo-
lution approach to assess binding events and chromatin
marks from ChIP-seq datasets. We have previously used
an early version of this methodology for mapping the
chromatin localization of RXRα and RARγ nuclear re-
ceptors [24], as well as for profiling RNA polymerase II
[16]. This report describes the implementation of MeDi-
ChI - originally developed by David Reiss to evaluate
ChIP-chip profiles [15] – for the analysis of datasets
generated by massive parallel sequencing.
From the conceptual point of view, this methodology

applies a different rationale to define an enrichment
event. In contrast to other peak detection algorithms,
MeDiChISeq uses the binding pattern properties, inhe-
rent to the ChIP-seq profile under study, to define en-
richment and background characteristics. Albeit other
shape-based methodologies for binding site identifica-
tion exist (e.g. Triform [14]; T-PIC [13]), MeDiChISeq
presents further conceptual advantages originating from
the training step that defines a “consensus” binding pat-
tern, which is then used to identify significant binding
events at genome-wide level. While a direct comparison
of the various shape-based methodologies would be of
interest, these tools were not operative/available when
we performed this study.
The comparative analysis of MACS, BayesPeak and

PeakRanger performance revealed that MeDiChISeq
identifies most of the sites predicted by other methods,
but in addition it discovers new significant binding
events/marks with a low level of false calls. We thus
conclude that the incorporation of a more complex fea-
ture to define the relevance of an enrichment event, i.e.
the evaluation of its shape defined by a preliminary
training process, is a major advantage for the peak call-
ing process. While MeDiChISeq has shown also optimal
performance when identifying binding patterns in his-
tone modification marks like H3K4me3 or H3K27ac,
which present broader enrichment patterns than tran-
scription factors, we did not perform exhaustive analyses
on even broader pattern profiles like those observed for
H3K36me3 or H3K27me3, because the current MeDi-
ChISeq release does not include enrichment island iden-
tification, as is the case for other tools like SICER [25],
RSEG [26] or BroadPeak [27]. Nevertheless, the present
release of MeDiChISeq is already able to perform opti-
mal binding site identification also for rather broad
enriched patterns, such as the H3K36me3 histone mark
(Additional file 11). Importantly, such multiple site iden-
tification recapitulates the enrichment island patterns
identified by SICER, strongly suggesting that also MeDi-
ChISeq performs well in such situations. In this context,
a further optional computational module that merges
closely annotated binding/modification sites is being
developed to use MeDiChISeq outputs for enrichment
island prediction.
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