60 research outputs found

    Noise thermometry and electron thermometry of a sample-on-cantilever system below 1 Kelvin

    Full text link
    We have used two types of thermometry to study thermal fluctuations in a microcantilever-based system below 1 K. We measured the temperature of a cantilever's macroscopic degree-of-freedom (via the Brownian motion of its lowest flexural mode) and its microscopic degrees-of-freedom (via the electron temperature of a metal sample mounted on the cantilever). We also measured both temperatures' response to a localized heat source. We find it possible to maintain thermal equilibrium between these two temperatures and a refrigerator down to at least 300 mK. These results are promising for ongoing experiments to probe quantum effects using micromechanical devices

    EPR-based ghost imaging using a single-photon-sensitive camera

    Get PDF
    Correlated photon imaging, popularly known as ghost imaging, is a technique whereby an image is formed from light that has never interacted with the object. In ghost imaging experiments, two correlated light fields are produced. One of these fields illuminates the object, and the other field is measured by a spatially resolving detector. In the quantum regime, these correlated light fields are produced by entangled photons created by spontaneous parametric down-conversion. To date, all correlated photon ghost imaging experiments have scanned a single-pixel detector through the field of view to obtain spatial information. However, scanning leads to poor sampling efficiency, which scales inversely with the number of pixels, N, in the image. In this work, we overcome this limitation by using a time-gated camera to record the single-photon events across the full scene. We obtain high-contrast images, 90%, in either the image plane or the far field of the photon pair source, taking advantage of the Einstein–Podolsky–Rosen-like correlations in position and momentum of the photon pairs. Our images contain a large number of modes, >500, creating opportunities in low-light-level imaging and in quantum information processing

    Distribution and dynamics of entanglement in high-dimensional quantum systems using convex-roof extended negativity

    Full text link
    We develop theories of entanglement distribution and of entanglement dynamics for qudit systems, which incorporate previous qubit formulations. Using convex-roof extended negativity, we generalize previous qubit results for entanglement distribution with isotropic states and for entanglement dynamics with the depolarizing channel, and we establish a relation between these two types of entanglement networks.Comment: 4 page

    Optomechanics for quantum technologies

    Get PDF
    The ability to control the motion of mechanical systems through interaction with light has opened the door to a plethora of applications in fundamental and applied physics. With experiments routinely reaching the quantum regime, the focus has now turned towards creating and exploiting interesting non-classical states of motion and entanglement in optomechanical systems. Quantumness has also shifted from being the very reason why experiments are constructed to becoming a resource for the investigation of fundamental physics and the creation of quantum technologies. Here, by focusing on opto- and electromechanical platforms we review recent progress in quantum state preparation and entanglement of mechanical systems, together with applications to signal processing and transduction, quantum sensing and topological physics, as well as small-scale thermodynamics

    Strong and Tunable Nonlinear Optomechanical Coupling in a Low-Loss System

    Full text link
    A major goal in optomechanics is to observe and control quantum behavior in a system consisting of a mechanical resonator coupled to an optical cavity. Work towards this goal has focused on increasing the strength of the coupling between the mechanical and optical degrees of freedom; however, the form of this coupling is crucial in determining which phenomena can be observed in such a system. Here we demonstrate that avoided crossings in the spectrum of an optical cavity containing a flexible dielectric membrane allow us to realize several different forms of the optomechanical coupling. These include cavity detunings that are (to lowest order) linear, quadratic, or quartic in the membrane's displacement, and a cavity finesse that is linear in (or independent of) the membrane's displacement. All these couplings are realized in a single device with extremely low optical loss and can be tuned over a wide range in situ; in particular, we find that the quadratic coupling can be increased three orders of magnitude beyond previous devices. As a result of these advances, the device presented here should be capable of demonstrating the quantization of the membrane's mechanical energy.Comment: 12 pages, 4 figures, 1 tabl

    Winterberg's conjectured breaking of the superluminal quantum correlations over large distances

    Get PDF
    We elaborate further on a hypothesis by Winterberg that turbulent fluctuations of the zero point field may lead to a breakdown of the superluminal quantum correlations over very large distances. A phenomenological model that was proposed by Winterberg to estimate the transition scale of the conjectured breakdown, does not lead to a distance that is large enough to be agreeable with recent experiments. We consider, but rule out, the possibility of a steeper slope in the energy spectrum of the turbulent fluctuations, due to compressibility, as a possible mechanism that may lead to an increased lower-bound for the transition scale. Instead, we argue that Winterberg overestimated the intensity of the ZPF turbulent fluctuations. We calculate a very generous corrected lower bound for the transition distance which is consistent with current experiments.Comment: 7 pages, submitted to Int. J. Theor. Phy

    Optical Nanofibers: a new platform for quantum optics

    Full text link
    The development of optical nanofibers (ONF) and the study and control of their optical properties when coupling atoms to their electromagnetic modes has opened new possibilities for their use in quantum optics and quantum information science. These ONFs offer tight optical mode confinement (less than the wavelength of light) and diffraction-free propagation. The small cross section of the transverse field allows probing of linear and non-linear spectroscopic features of atoms with exquisitely low power. The cooperativity -- the figure of merit in many quantum optics and quantum information systems -- tends to be large even for a single atom in the mode of an ONF, as it is proportional to the ratio of the atomic cross section to the electromagnetic mode cross section. ONFs offer a natural bus for information and for inter-atomic coupling through the tightly-confined modes, which opens the possibility of one-dimensional many-body physics and interesting quantum interconnection applications. The presence of the ONF modifies the vacuum field, affecting the spontaneous emission rates of atoms in its vicinity. The high gradients in the radial intensity naturally provide the potential for trapping atoms around the ONF, allowing the creation of one-dimensional arrays of atoms. The same radial gradient in the transverse direction of the field is responsible for the existence of a large longitudinal component that introduces the possibility of spin-orbit coupling of the light and the atom, enabling the exploration of chiral quantum optics.Comment: 65 pages, to appear in Advances in Atomic, Molecular and Optical Physic

    Laser-induced rotation and cooling of a trapped microgyroscope in vacuum

    Get PDF
    This work was supported by the UK Engineering and Physical Sciences Research Council (EPSRC grant numbers: EP/J01771X/1 and EP/G061688/1)Quantum state preparation of mesoscopic objects is a powerful playground for the elucidation of many physical principles. The field of cavity optomechanics aims to create these states through laser cooling and by minimizing state decoherence. Here we demonstrate simultaneous optical trapping and rotation of a birefringent microparticle in vacuum using a circularly polarized trapping laser beam—a microgyroscope. We show stable rotation rates up to 5 MHz. Coupling between the rotational and translational degrees of freedom of the trapped microgyroscope leads to the observation of positional stabilization in effect cooling the particle to 40 K. We attribute this cooling to the interaction between the gyroscopic directional stabilization and the optical trapping field.Publisher PDFPeer reviewe
    • 

    corecore