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Winterberg’s conjectured breaking of the superluminal quantum correlations

over large distances

Eleftherios Gkioulekas
∗

Department of Mathematics, University of Central Florida, Orlando, FL, United States

We elaborate further on a hypothesis by Winterberg that turbulent fluctuations of the zero point

field may lead to a breakdown of the superluminal quantum correlations over very large distances.

A phenomenological model that was proposed by Winterberg to estimate the transition scale of the

conjectured breakdown, does not lead to a distance that is large enough to be agreeable with recent

experiments. We consider, but rule out, the possibility of a steeper slope in the energy spectrum

of the turbulent fluctuations, due to compressibility, as a possible mechanism that may lead to an

increased lower-bound for the transition scale. Instead, we argue that Winterberg overestimated

the intensity of the ZPF turbulent fluctuations. We calculate a very generous corrected lower

bound for the transition distance which is consistent with current experiments.

PACS numbers: 03.65.Ta, 03.65.Ud

Keywords: entanglement; EPR experiment; quantum correlations

1. INTRODUCTION

A compelling paradox in our current understanding of
nature is the fundamental inconsistency between the non-
locality of quantum mechanics and the Lorentz invariance
demanded by the theory of relativity. This inconsistency
can be concealed to a large extent because it is possi-
ble to formulate relativistic quantum theories that pre-
dict Lorentz-invariant statistical behaviour. Thus, from a
strictly empiricist standpoint, all appears to be well since
non-locality cannot be exploited to transmit information.
The inconsistency becomes more obvious when one at-
tempts to formulate a Bohmian interpretation of quan-
tum mechanics (Bohm, 1952a,b, 1953; Bohm and Hiley,
1993; Bohm and Vigier, 1954; Holland, 1993). Then it
becomes necessary to introduce the quantum potential
interactions which violate Lorentz invariance. There is
also the problem of making the equilibrium condition
ρ = |ψ|2 Lorentz invariant (Berndl et al., 1996). Though
resolving this latter problem is possible for the case
of non-interacting but entangled particles (Durr et al.,
1999), the non-local nature of the quantum potential in-
teraction is unavoidable by any interpretation that agrees
with experiment (Allori and Zanghi, 2004). Even when
one decides to avoid the problem of interpretation al-
together (by ignoring it) one still has to contend with
the presumably instantaneous entanglement between dis-
tant quanta in situations such as the well-known EPR
two-photon experiment (Bohr, 1935; Clauser et al., 1969;
Einstein et al., 1935; Whitaker, 2004).

The original Aspect experiment (Aspect et al., 1982)
confirmed the existence of quantum entanglement over
a range as large as 10 meters by confirming the viola-
tion of Bell’s inequality. More recent experiments have

∗Electronic address: lf@mail.ucf.edu

extended the range, initially to 4 km (Tapster et al.,
1994), and subsequently to 11 km (Thew et al., 2002;
Tittel et al., 1998a,b) and even 50 km (Markicic et al.,
2004). Winterberg (1991) observed that we cannot pre-
sume, on the basis of these experiments, that quantum
correlations will indefinitely continue to hold over larger
distances. For example, it would be a bold extrapola-
tion from a 11 km experiment to presume that quantum
correlations persist over interstellar and intergalactic dis-
tances! He also noted that the notion that the collapse of
the wavefunction occurs instantaneously is probably an
unjustified idealization. It may be more reasonable to ex-
pect that quantum correlations propagate at a finite su-
perluminal speed, which may be significantly larger than
the speed of light, but nonetheless finite.

If it is true that quantum correlations break down be-
yond a certain “transition” length scale, then we are
lead to the following implications: First, when we switch
into a different inertial reference frame, the transition
length scale should be expected to contract over certain
directions in accordance with the Lorentz transformation.
Consequently, it becomes possible to establish a unique
reference frame “at rest”, as the reference frame where
the transition length scale is constant in all directions!
This then, makes the idea of the original pre-Einstein the-
ory of relativity by Lorentz and Poincare compelling once
again (Winterberg, 1987). Furthermore, if the propaga-
tion speed of the superluminal interactions responsible
for the collapse of the wavefunction is indeed finite, that
would then indicate the existence of a medium through
which these interactions are transmitted.

Winterberg proposed the hypothesis that this medium
is the field of zero-point vacuum energy, also known as
the ZPF field (Winterberg, 1991, 1998). The physical re-
ality of the ZPF field has been established experimentally
by the Casimir effect (Bordag et al., 2001). However the
underlying physical principles that govern the ZPF field
at the Planck scale are poorly understood. According

http://arXiv.org/abs/0707.2633v1
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to Winterberg, the simplest possible model for the ZPF
field is as a “Planck-mass plasma” of two coupled su-
perfluids, one with positive mass particles and one with
negative mass particles (Winterberg, 1988, 1995, 1997,
2003, 2006). Under small perturbations, the Winterberg
Planck-mass plasma is analogous to a compressible fluid
with p ∝ ρ2 (Winterberg, 1988). Winterberg (1998) con-
jectured that over large length scales this medium under-
goes turbulent fluctuations which disrupt the quantum
correlations at length scales where the turbulence energy
spectrum exceeds the ZPF energy spectrum.

Although the physics of the ZPF field at the Planck
scale is currently unknown to us, if it is assumed that
the ZPF field is Lorentz invariant, then it must follow
the Boyer energy spectrum

E(k) = ~ck3, (1)

which can be shown (Boyer, 1969a,b) to be the only
Lorenz invariant spectrum as long as it is infinitely ex-
tended to arbitrarily large wavenumbers k. More realisti-
cally, k should be cut off at wavenumbers corresponding
to the Planck length scale rp, in which case Lorentz in-
variance would be broken only when the Planck length
scale is approached. The cutoff wavenumber defines a
length, which in turn can define a rest reference frame as
the one where the cut-off length is isotropic. The trun-
cated spectrum

E(k) =

{

~ck3, k ≤ 2π/rp
0, k > 2π/rp

(2)

is still Lorentz invariant in terms of slope and numeri-
cal coefficient (Eriksen and Gron, 1987). However, the
cutoff scale contracts under a Lorentz transformation
like any other length. It remains a point of contro-
versy whether or not the actual Planck length scale is
the same or different for different observers. According
to the recently proposed “double special relativity the-
ory” (Amelino-Camelia, 2002) (DSR), the Planck length
scale should be the same for all observers! Under DSR,
Eq. (2) would also be invariant for all inertial frames of
reference! However, that would still not necessarily apply
to the quantum correlations breakdown transition scale,
which would still define a rest reference frame.

Knowing the energy spectrum of the ZPF field makes
it possible to estimate the transition length scale λ0

where quantum correlations break down by finding the
transition wavenumber k0 where the Boyer energy spec-
trum is comparable with the energy spectrum of the
ZPF turbulent fluctuations. The salient feature of this
approach is that it is reliant only on our assumptions
concerning energy spectra, and does not involve fur-
ther speculative modelling assumptions. Winterberg
(1998) used the Kolmogorov-Batchelor (Batchelor, 1947;
Kolmogorov, 1941a,b) energy spectrum E(k) ∝ k−5/3

and showed that

λ0 = 12κ−3/14m (3)

where κ represents the degree of turbulent fluctuations
and ranges as 0 < κ < 1. For κ = 1, we get the lower-
bound length scale of 12m which is too small to be consis-
tent with the experiments of Gisin (Markicic et al., 2004;
Thew et al., 2002; Tittel et al., 1998a,b). Winterberg
(1998) proposed that one should use instead the evalua-
tion κ = 10−5 , which is equal to the spatial temperature
variation observed in the cosmic microwave radiation.
This choice was thought to be plausible because “the
microwaves are refracted by the fluctuating gravitational
field of the eddies” (Winterberg, 2007). Nonetheless, a
simple calculation shows that, contrary to Winterberg’s
claim, this only gives us one more order of magnitude:

λ0 = 12(10−5)−3/14m ≈ 120m (4)

This is still too small to agree with experiments.
In the present paper we will consider the ramifications

of weakening the assumption that the ZPF turbulent fluc-
tuations are governed by the Kolmogorov scaling k−5/3.
The idea is that a steeper slope will give a larger value
for the transition length scale. We will show that even
with steeper slopes we still do not get a transition scale
larger than 10 km. Instead, we will argue that the choice
κ = 10−5 is too large because it corresponds to an unre-
alistically large energy dissipation rate.

The paper is organized as follows. The energy spec-
trum of the turbulent fluctuations is discussed in section
2. We recalculate the transition length scale in section 3.
The problem of guessing the parameter κ is discussed in
section 4. Conclusions are given briefly in section 5.

2. THE SPECTRUM OF ZPF TURBULENCE

The underlying assumption of Kolmogorov’s theory
of turbulence (Batchelor, 1947; Kolmogorov, 1941a,b) is
that energy is injected into the system at small wavenum-
bers by random forcing, which is then cascaded to larger
wavenumbers where it is being dissipated. Between the
forcing range of wavenumbers where energy comes in, and
the dissipation range of wavenumbers were energy comes
out, it is assumed that there is a so-called “inertial range”
of wavenumbers through which the energy is transferred
to small scales via nonlinear interactions. This the-
ory has been confirmed both experimentally (Gibson,
1962; Grant et al., 1962), and repeatedly with numer-
ical simulations (Kaneda et al., 2003). There has also
been considerable progress towards formulating a sta-
tistical theory of the energy cascade (Gkioulekas, 2007;
L’vov and Procaccia, 1997, 2000). On the other hand,
it is important to note that the theory has only been
investigated extensively in the context of incompressible
turbulence, and it is not obvious that it is applicable for
compressible turbulence.

For the simplest case of adiabatic compressible turbu-
lence where the pressure is dependent only on the density
via the relation p ∝ ργ with γ the adiabatic constant, the
Moisseev-Shivamoggi prediction (Moiseev et al., 1976;
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Shivamoggi, 1992) is that the energy spectrum of the
energy cascade is steeper and has slope k−a with a given
by

a =
5γ − 1

3γ − 1
. (5)

The steeper spectral slope arises because of a dis-
tributed energy dissipation throughout the inertial range
by acoustic waves. The Moisseev-Shivamoggi spectrum
reads:

E(k) = C[ργ−1ε2γc−2k−(5γ−1)]1/(3γ−1) (6)

Here, C is a universal constant, ρ the density, ε the rate
of energy injection per unit time and volume, and k the
wavenumber. The spectrum approaches the Kolmogorov
spectrum

E(k) = Cρ1/3ε2/3k−5/3 (7)

when γ → ∞ and the Kadomtsev-Petviashvili spectrum

E(k) = Cεc−1k−2 (8)

when γ = 1 (Kadomtsev and Petviashvili, 1973). Note
that arbitrarily steeper slopes are possible, in principle, if
1/3 < γ < 1, but a spectrum steeper than k−3 would vi-
olate the locality of the nonlinear interactions that drive
the energy cascade, and wouldn’t really represent phys-
ically a state of fully developed turbulence. Consider-
ing that for small fluctuations the Winterberg Planck-
mass plasma behaves as a compressible fluid with γ = 2
(Winterberg, 1988), the energy spectrum of compressible
turbulence may be more relevant to the problem at hand.

Let us now generalize Winterberg’s calculation of the
energy spectrum of ZPF turbulence for the general slope
a. Assume that the energy spectrum of the turbulent
fluctuations reads

Eturb(k) = Ak−a (9)

where A is constant and a the scaling exponent. To esti-
mate the constant A, we follow Winterberg (1998), and
we assume that the total energy of the turbulent fluctu-
ations is

E = κρc2, (10)

where ρ is the average density of the universe and κ is a
constant 0 < κ < 1 that measures the degree of turbu-
lence. We estimate the density ρ with the critical density
ρcrit which separates the open and closed universe sce-
naria:

ρ ≈ ρcrit =
3H2

8πG
(11)

Here H is the Hubble constant and G Newton’s gravity
constant. We also assume that the largest eddies have
length scale of the order of the world radius R ∼ c/H . It

follows from these considerations that the total energy E

also satisfies

E =

∫

∞

1/R

Ak−a dk = −
A

1 − a

1

R1−a
(12)

and combining (10) and (12) we find A:

A = (a− 1)κρc2R1−a (13)

A related question, which was not addressed by Win-
terberg, is how the energy is injected and dissipated for
the turbulent fluctuations of the field. On a cosmologi-
cal scale there is an amount of energy which is injected
into the universe due to the extension of the event hori-
zon. This rate of energy injection represents the total
available energy and it is, of course, an upper bound to
the actual rate of energy injection into the ZPF field’s
turbulent fluctuations, which can be very much smaller.
Following this idea, it is possible to arrive to an alterna-
tive derivation of the energy spectrum of the turbulent
fluctuations of the ZPF field.

If R is the radius of the event horizon, and ρc2 the
average energy density of the universe, then the rate with
which the horizon expansion increases the total energy is
ρc2(4πR2)(dR/dt). To get the rate of energy injection
ε we must divide this quantity with the volume of the
universe. Thus, since the radius R expands with the
speed of light (i.e., dR/dt = c), it follows that

ε = ρc2
4πR2dR

dt

1

(4/3)πR3
(14)

= 3ρc2R−1c = 3ρc3R−1 (15)

Substituting ε to the Moisseev-Shivamoggi spectrum,
and using the speed of light for c, yields:

E(k) = C[ργ−1(3ρc3R−1)2γc−2k−(5γ−1)]1/(3γ−1) (16)

= C[ρ3γ−132γR−2γc6γ−2k−(5γ−1)]1/(3γ−1) (17)

≈ ρc2R−2γ/(3γ−1)k−(5γ−1)/(3γ−1) (18)

It is easy to see that solving a = (5γ − 1)/(3γ − 1) for
γ gives γ = (1 − a)/(5 − 3a) and that it follows that
2γ/(3γ − 1) = a − 1. Thus, we can write E(k) in terms
of a as follows:

E(k) ≈ ρc2R1−ak−a (19)

Here we have disregarded the numerical coefficients. We
see that we essentially recover Winterberg’s spectrum for
the case κ = 1. However, if instead of ρc2 we use κρc2

for the universe energy density, we do not obtain exactly
the same dependence on κ as we would from the gen-
eralization of Winterberg’s argument! So there is some
ambiguity on how one should define the degree κ of the
turbulent fluctuations.
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3. ESTIMATING THE TRANSITION SCALE

We will now show that a steeper slope for the en-
ergy spectrum of the turbulent fluctuations gives a larger
transition length scale. However, we will see that there
is no case that gives a large enough length scale to
be consistent with Gisin’s experiments (Markicic et al.,
2004; Thew et al., 2002; Tittel et al., 1998a,b), unless, a
smaller value of κ is chosen.

The energy spectrum of the zero-point vacuum energy
is given by

Evac(k) = ~ck3 (20)

The transition wavenumber k0 where we may expect
quantum correlations to break can be estinated, in the
sense of an upper-bound, by matching the two energy
spectra Evac(k) and Eturb(k) = Ak−a, which yields

k ≈

(

A

~c

)
1

3+a

≡ k0 (21)

Here we deviate slightly from Winterberg (1998) who
compared the cumulative spectra instead. The advan-

tage of this approach is that we don’t need to make the
assumption that these power laws hold at all scales. In-
stead, it is sufficient that they hold around the intersec-
tion wavenumber.

Using the evaluation A = (a− 1)κρc2R1−a the transi-
tion wavenumber k0 reads:

k0 =

(

(a− 1)κρc2R1−a

~c

)

1
3+a

(22)

=

[

(a− 1)
κc

~

(

3H2

8πG

)

( c

H

)1−a
]

1
3+a

(23)

=

[

3(a− 1)κc2H

8πG~

(

H

c

)a]

1
3+a

(24)

This result generalizes equation (10) in Winterberg
(1998). The corresponding cross-over length scale reads

λ0 =
2π

k0
= 2π

[

8πG~

3(a− 1)κc2H

( c

H

)a
]

1
3+a

(25)

On a decimal logarithmic scale, the order of magnitude
of λ0 is

logλ0 = log(2π) −
1

3 + a

[

log
3c2H

8πG~
+ log κ+ log(a− 1) + a log

(

H

c

)]

. (26)

Let σ~, σG, σc, and σH be the measurement errors of the corresponding constants ~, G, c, and H , and assume for
simplicity that these errors are statistically uncorrelated. The propagated statistical uncertainty is given by:

σ2
λ0

=

[

∂λ0

∂G
σG

]2

+

[

∂λ0

∂c
σc

]2

+

[

∂λ0

∂~
σ~

]2

+

[

∂λ0

∂H
σH

]2

(27)

=

[

1

3 + a

λ0σG

G

]2

+

[

a− 2

3 + a

λ0σc

c

]2

+

[

1

3 + a

λ0σ~

~

]2

+

[

1

3 + a

λ0σH

H

]2

(28)

Consequently, in terms of the relative standard uncertainties ec = σc/c, eG = σG/G, e~ = σ~/~, eH = σH/H , and
eκ = σκ/κ we obtain

(

σλ0

λ0

)2

=
e2G + (a− 2)2e2c + e2

~
+ (a+ 1)2e2H + e2κ

(3 + a)2
(29)

The 2006 CODATA recommended values for the univer-
sal constants are: c = 2997924583 m/s, G = 6.67428 ×
10−11 N ·m2kg−2, ~ = 1.054571628×10−34 J ·s. The cor-
responding relative standard uncertainties are: ec = 0,
eG = 10−4, e~ = 5 · 10−5. Furthermore, the recent
measurement (Bonamente et al., 2006) of the Hubble
constant by NASA’s Chandra X-ray Observatory gives
H = 77 km s−1Mpc−1 (with 1Mpc = 3.26·106 lightyears,
we get H = 2.49 · 10−18 s−1). The uncertainty of H is

eH = 0.15, which is by far the dominant contribution to
σλ0

. We may thus estimate σλ0
practically via:

(

σλ0

λ0

)

≈
(a+ 1)eH

(a+ 3)
(30)

From these evaluations we also obtain the following em-
pirical formula for the transition wavelength λ0
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logλ0 = log(2π) −
98.045658− 60.049519a− log κ− log(a− 1)

a+ 3
(31)

The relevant slopes a are: Kolmogorov scaling with inter-
mittency corrections (i.e. a = 1.7), compressible scaling
with γ = 2 (i.e. a = 1.8). It is also worthwhile to con-
sider the extreme case a = 2 which corresponds to the
shock-dominated Kadomtsev-Petviashvili spectrum. For
κ = 1, we get the following transition scales: a = 1.7
gives λ0 = (16 ± 1)m, a = 1.8 gives λ0 = (53 ± 4)m,
and a = 2 gives λ0 = (517 ± 46)m. The transition scales
are increased for κ = 10−5 (Winterberg’s choice) as fol-
lows: a = 1.7 gives λ0 = (185 ± 15)m, a = 1.8 gives
λ0 = (587 ± 51)m, and a = 2 gives λ0 = (5172 ± 465)m.
In all cases the transition scale is less than 11km. This
suggests that Winterberg’s choice for κ is probably too
large.

4. WHAT κ IS REASONABLE?

To get a good sense of what κ is reasonable, we shall
calculate the energy dissipation rate ε in terms of κ.
From the Moisseev-Shivamoggi spectrum we see that A
reads:

A = [ργ−1ε2γc−2]1/(3γ−1). (32)

Here we have assumed that the Kolmogorov constant is
unity, since we shall be doing only order of magnitude
calculations. Solving for ε we obtain

ε =

[

A3γ−1

ργ−1c−2

]1/2γ

=

[

[(a− 1)κρc2R1−a]3γ−1

ργ−1c−2

]1/2γ

(33)

= [[(a− 1)κR1−a]3γ−1ρ2γc6γ ]1/2γ (34)

= ρc3[(a− 1)κR1−a](3γ−1)/(2γ) (35)

This expression can be simplified further because the
identity 2γ/(3γ − 1) = a− 1 implies that

(1 − a)(3γ − 1)

2γ
= −1. (36)

Thus the energy dissipation rate can be rewritten as

ε = ρc3R−1[(a− 1)κ]1/(a−1). (37)

To get some physical understanding, compare the
amount of energy dissipated over the entire universe un-
der the rate ε during time t, with the energy that would
be released by the annihilation of N solar masses M .
Then, NMc2 = εR3t, and it follows that

N =
εR3t

Mc2
=
ρc3R−1[(a− 1)κ]1/(a−1)R3t

Mc2
(38)

=
ρcR2t

M
[(a− 1)κ]1/(a−1) = N0[(a− 1)κ]1/(a−1) (39)

where N0 = ρcR2t/M is a dimensionless constant. The
reverse relation between κ and N is:

κ =
1

a− 1

(

N

N0

)a−1

(40)

Using M = 1.98 · 1030kg (the mass of our Sun) and t =
1day, yields N0 = 1057. The value κ = 10−5 that was
proposed by Winterberg gives N ≈ 1049 for a = 1.7. To
get some sense of what this means, consider the rescaled
count

Ns = N

(

ℓ

R

)3

= N

(

ℓH

c

)3

, (41)

with ℓ = 8 lightminutes, which is approximately the
Earth-Sun distance. We find Ns ≈ 105 . This means
that every day, within the neighborhood of Earth’s plan-
etary orbit, the amount of the energy dissipated should
be equal to the energy that would be released by the
complete annihilation of 105 solar masses! For a = 1.8
this count increases to Ns = 106 solar masses per day.
Such an extraordinary amount of energy should have
been somewhat conspicuous to all life on Earth! This
is why I believe that κ should be chosen to be much
smaller.

As we have mentioned previously, turbulence requires
both a mechanism for injecting energy into the sys-
tem, and a mechanism for dissipating the energy at
large wavenumbers. The question of finding a reasonable
choice for the variable κ, is equivalent to the question
of deciding on an upper bound for the dissipation rate of
the turbulent fluctuations of the ZPF field. Naturally, the
underlying problem is understanding the physical mech-
anism responsible for dissipating the energy cascade of
ZPF turbulence in the first place!

Rather than speculate on the particulars of the dissi-
pation mechanism, we can simply assume that the rate
of energy output from the Sun is an extremely gener-
ous upper bound for the rate of energy dissipation over a
spherical volume around the Sun that reaches the Earth.
Since the Sun has an overall lifetime of approximately 10
billion years (which is approximately 1012 days), we can
further overestimate the rate of energy output by choos-
ing Ns = 10−12 solar masses per day. The corresponding
κ is a dependent, and it is given by

κ =
1

a− 1

(

Ns

N0

( c

ℓH

)3
)a−1

(42)

For a = 1.7 , this gives κ = 9 × 10−18 , from which we
get for the transition scale λ0 = 67 ± 5 km. The situ-
ation is improved if we choose a = 1.8 . Then we get
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κ = 2 × 10−20 which gives λ0 = 630 ± 55 km. These
numbers are extremely generous underestimates for any
reasonable evaluation of the transition scale and they are
both agreeable with Gisin’s experiments (Markicic et al.,
2004; Thew et al., 2002; Tittel et al., 1998a,b). The ac-
tual transition scale probably exceeds these by some or-
ders of magnitude and could be as large as, for example,
the Earth-Moon distance.

5. CONCLUSION AND DISCUSSION

In the present paper I have shown that the model of
the ZPF turbulent fluctuations proposed by Winterberg
(1998) to account for the conjectured breakdown of the
quantum correlations is plausible in the sense that it does
not disagree with current experiments. However, it is
still unsatisfactory to not have a clear understanding of
where the turbulence gets the energy, how the energy gets
dissipated, and where it ends up after it is dissipated.
This aspect of the model requires further elaboration.

The strange behavior of quantum-mechanical systems
that involves entanglement over large distances is a very
tantalizing mystery. It has led most physicists to the very
extreme position of denying the existence of an objective
reality underlying quantum mechanics (the Copenhagen
interpretation). This prompted Einstein to comment in
a memorable way on the non-existence of God’s gam-
bling addiction! A more mild position along the same
lines, which is still nonetheless a partial denial of objec-
tive reality, is the “relational interpretation” (Filk, 2006;
Laudisa, 2001; Smerlak and Rovelli, 2007). The idea here
is to deny only as much of objective reality as is necessary
to make the existing problems go away.

Part of the mystery is that we don’t really understand
what the wavefunction really is. Winterberg (1991) as-
sumes that the wavefunction is a genuine physical field
that really collapses. In the same paper he also reviews
the early literature on the subject. It is hard to accept
this viewpoint and not expect the collapse to propagate
at a finite speed, or to not be disrupted by possible noise
in the mechanism that propagates it. From the stand-
point of the Bohmian interpretation, the wavefunction
of the combined physical system and the measuring ap-
paratus never really collapses! Nonetheless, even in the
Bohmian interpretation, one models (instead of deriving
from first principles) the Hamiltonian governing the in-
teraction between system and apparatus during measure-
ment. A model is just a model and there is no need for it
to be exact. Furthermore, one can expect a breakdown in
quantum correlations if there is a small amount of noise,
presumably from subquantum processes, in the guidance
condition that determines the particle velocities from the
wave function.

There is also some controversy over the experiments
that have convinced us of the reality of quantum correla-
tions in the first place. It is believed by some that these
experiments are susceptible to certain “loopholes” (the

locality loophole and the detection loophole) that prevent
them from being conclusive (Ferrero et al., 1990; Santos,
1991, 1992, 2004). There has been some interest in de-
veloping experiments that tried to close the loopholes
(Aspect, 1999, 2007; Grangier, 2001; Groblacher et al.,
2007; Rowe et al., 2001; Weihs et al., 1998; Zeilinger,
1986). Nonetheless, the controversy continues (Santos,
2007). It may turn out that, over increasing distances,
these experiments begin to fail gradually. The “loop-
holes” could then represent modes of failure that are
“irrelevant” at short distances but become increasingly
relevant over larger distances. Even if the particulars of
the model proposed by Winterberg turn out to be wrong,
this underlying issue of understanding the possible role
of distance with respect to entanglement remains.
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