105 research outputs found
O3/O7 Orientifold Truncations and Very Special Quaternionic-Kaehler Geometry
We study the orientifold truncation that arises when compactifying type II
string theory on Calabi-Yau orientifolds with O3/O7-planes, in the context of
supergravity. We look at the N=2 to N=1 reduction of the hypermultiplet sector
of N=2 supergravity under the truncation, for the case of very special
quaternionic-Kaehler target space geometry. We explicitly verify the Kaehler
structure of the truncated spaces, and we study the truncated isometry algebra.
For symmetric special quaternionic spaces, we give a complete overview of the
spaces one finds after truncation. We also find new examples of dual Kaehler
spaces, that give rise to flat potentials in N=1 supergravity.Comment: 25 pages, LaTeX, v2:curvature tensor of the dual symmetric spaces
calculated, section 7 expanded, references added, v3:few typos fixed, version
to appear in Class.Quantum Gravit
The Complete Solution of 2D Superfield Supergravity from graded Poisson-Sigma Models and the Super Pointparticle
Recently an alternative description of 2d supergravities in terms of graded
Poisson-Sigma models (gPSM) has been given. As pointed out previously by the
present authors a certain subset of gPSMs can be interpreted as "genuine"
supergravity, fulfilling the well-known limits of supergravity, albeit deformed
by the dilaton field. In our present paper we show that precisely that class of
gPSMs corresponds one-to-one to the known dilaton supergravity superfield
theories presented a long time ago by Park and Strominger. Therefore, the
unique advantages of the gPSM approach can be exploited for the latter: We are
able to provide the first complete classical solution for any such theory. On
the other hand, the straightforward superfield formulation of the point
particle in a supergravity background can be translated back into the gPSM
frame, where "supergeodesics" can be discussed in terms of a minimal set of
supergravity field degrees of freedom. Further possible applications like the
(almost) trivial quantization are mentioned.Comment: 48 pages, 1 figure. v3: after final version, typos correcte
F-Theory and the Mordell-Weil Group of Elliptically-Fibered Calabi-Yau Threefolds
The Mordell-Weil group of an elliptically fibered Calabi-Yau threefold X
contains information about the abelian sector of the six-dimensional theory
obtained by compactifying F-theory on X. After examining features of the
abelian anomaly coefficient matrix and U(1) charge quantization conditions of
general F-theory vacua, we study Calabi-Yau threefolds with Mordell-Weil
rank-one as a first step towards understanding the features of the Mordell-Weil
group of threefolds in more detail. In particular, we generate an interesting
class of F-theory models with U(1) gauge symmetry that have matter with both
charges 1 and 2. The anomaly equations --- which relate the Neron-Tate height
of a section to intersection numbers between the section and fibral rational
curves of the manifold --- serve as an important tool in our analysis.Comment: 29 pages + appendices, 5 figures; v2: minor correction
Late-glacial and Holocene European pollen data
peerreview_statement: The publishing and review policy for this title is described in its Aims & Scope. aims_and_scope_url: http://www.tandfonline.com/action/journalInformation?show=aimsScope&journalCode=tjom2
Explicit de Sitter Flux Vacua for Global String Models with Chiral Matter
We address the open question of performing an explicit stabilisation of all
closed string moduli (including dilaton, complex structure and Kaehler moduli)
in fluxed type IIB Calabi-Yau compactifications with chiral matter. Using toric
geometry we construct Calabi-Yau manifolds with del Pezzo singularities.
D-branes located at such singularities can support the Standard Model gauge
group and matter content. In order to control complex structure moduli
stabilisation we consider Calabi-Yau manifolds which exhibit a discrete
symmetry that reduces the effective number of complex structure moduli. We
calculate the corresponding periods in the symplectic basis of invariant
three-cycles and find explicit flux vacua for concrete examples. We compute the
values of the flux superpotential and the string coupling at these vacua.
Starting from these explicit complex structure solutions, we obtain AdS and dS
minima where the Kaehler moduli are stabilised by a mixture of D-terms,
non-perturbative and perturbative alpha'-corrections as in the LARGE Volume
Scenario. In the considered example the visible sector lives at a dP_6
singularity which can be higgsed to the phenomenologically interesting class of
models at the dP_3 singularity.Comment: 49 pages, 5 figures; v2: references adde
A megaxion at 750 GeV as a first hint of low scale string theory
Journal of High Energy Physics 2016.7 (2016): 021 reproduced by permission of Scuola Internazionale Superiore di Studi Avanzati (SISSA)Low scale string models naturally have axion-like pseudoscalars which couple directly to gluons and photons (but not Wâs) at tree level. We show how they typically get tree level masses in the presence of closed string fluxes, consistent with the axion discrete gauge symmetry, in a way akin of the axion monodromy of string inflation and relaxion models. We discuss the possibility that the hints for a resonance at 750 GeV recently reported at ATLAS and CMS could correspond to such a heavy axion state (megaxion). Adjusting the production rate and branching ratios suggest the string scale to be of order Ms â 7â104 TeV, depending on the compactification geometry. If this interpretation was correct, one extra Zâ gauge boson could be produced before reaching the string threshold at LHC and future collidersThis work is partially supported by the grants FPA2012-32828 and FPA2015-65929-P from the MINECO, the ERC Advanced Grant SPLE under contract ERC-2012-ADG-20120216-320421, the Consolider-Ingenio 2010 programme under grant MULTIDARK CSD2009-00064 and the grant SEV-2012-0249 of the âCentro de Excelencia Severo Ochoaâ Programm
Genetic architecture of subcortical brain structures in 38,851 individuals
Subcortical brain structures are integral to motion, consciousness, emotions and learning. We identified common genetic variation related to the volumes of the nucleus accumbens, amygdala, brainstem, caudate nucleus, globus pallidus, putamen and thalamus, using genome-wide association analyses in almost 40,000 individuals from CHARGE, ENIGMA and UK Biobank. We show that variability in subcortical volumes is heritable, and identify 48 significantly associated loci (40 novel at the time of analysis). Annotation of these loci by utilizing gene expression, methylation and neuropathological data identified 199 genes putatively implicated in neurodevelopment, synaptic signaling, axonal transport, apoptosis, inflammation/infection and susceptibility to neurological disorders. This set of genes is significantly enriched for Drosophila orthologs associated with neurodevelopmental phenotypes, suggesting evolutionarily conserved mechanisms. Our findings uncover novel biology and potential drug targets underlying brain development and disease
Genetic architecture of subcortical brain structures in 38,851 individuals
Subcortical brain structures are integral to motion, consciousness, emotions and learning. We identified common genetic variation related to the volumes of the nucleus accumbens, amygdala, brainstem, caudate nucleus, globus pallidus, putamen and thalamus, using genome-wide association analyses in almost 40,000 individuals from CHARGE, ENIGMA and UK Biobank. We show that variability in subcortical volumes is heritable, and identify 48 significantly associated loci (40 novel at the time of analysis). Annotation of these loci by utilizing gene expression, methylation and neuropathological data identified 199 genes putatively implicated in neurodevelopment, synaptic signaling, axonal transport, apoptosis, inflammation/infection and susceptibility to neurological disorders. This set of genes is significantly enriched for Drosophila orthologs associated with neurodevelopmental phenotypes, suggesting evolutionarily conserved mechanisms. Our findings uncover novel biology and potential drug targets underlying brain development and disease
- âŠ