10 research outputs found

    L1CAM binds ErbB receptors through Ig-like domains coupling cell adhesion and neuregulin signalling.

    Get PDF
    During nervous system development different cell-to-cell communication mechanisms operate in parallel guiding migrating neurons and growing axons to generate complex arrays of neural circuits. How such a system works in coordination is not well understood. Cross-regulatory interactions between different signalling pathways and redundancy between them can increase precision and fidelity of guidance systems. Immunoglobulin superfamily proteins of the NCAM and L1 families couple specific substrate recognition and cell adhesion with the activation of receptor tyrosine kinases. Thus it has been shown that L1CAM-mediated cell adhesion promotes the activation of the EGFR (erbB1) from Drosophila to humans. Here we explore the specificity of the molecular interaction between L1CAM and the erbB receptor family. We show that L1CAM binds physically erbB receptors in both heterologous systems and the mammalian developing brain. Different Ig-like domains located in the extracellular part of L1CAM can support this interaction. Interestingly, binding of L1CAM to erbB enhances its response to neuregulins. During development this may synergize with the activation of erbB receptors through L1CAM homophilic interactions, conferring diffusible neuregulins specificity for cells or axons that interact with the substrate through L1CAM

    The promoter of ZmMRP-1, a maize transfer cell-specific transcriptional activator, is induced at solute exchange surfaces and responds to transport demands

    Get PDF
    Transfer cells have specializations that facilitate the transport of solutes across plant exchange surfaces. ZmMRP-1 is a maize (Zea mays) endosperm transfer cell-specific transcriptional activator that plays a central role in the regulatory pathways controlling transfer cell differentiation and function. The present work investigates the signals controlling the expression of ZmMRP-1 through the production of transgenic lines of maize, Arabidopsis, tobacco and barley containing ZmMRP-1promoter:GUS reporter constructs. The GUS signal predominantly appeared in regions of active transport between source and sink tissues, including nematode-induced feeding structures and at sites of vascular connection between developing organs and the main plant vasculature. In those cases, promoter induction was associated with the initial developmental stages of transport structures. Significantly, transfer cells also differentiated in these regions suggesting that, independent of species, location or morphological features, transfer cells might differentiate in a similar way under the influence of conserved induction signals. In planta and yeast experiments showed that the promoter activity is modulated by carbohydrates, glucose being the most effective inducer

    Thyroid hormone action in the adult brain: gene expression profiling of the effects of single and multiple doses of triiodo-L-thyronine in the rat striatum

    No full text
    Abstract Thyroid hormones have profound effects on mood and behavior, but the molecular basis of thyroid hormone action in the adult brain is relatively unknown. In particular, few thyroid hormone-dependent genes have been identified in the adult brain despite extensive work carried out on the developing brain. In this work we performed global analysis of gene expression in the adult rat striatum in search for genomic changes taking place after administration of T(3) to hypothyroid rats. The hormone was administered in two different schedules: 1) a single, large dose of 25 microg per 100 g body weight (SD) or 2) 1.5 microg per 100 g body weight once daily for 5 d (RD). Twenty-four hours after the single or last of multiple doses, gene expression in the striatum was analyzed using Codelink microarrays. SD caused up-regulation of 149 genes and down-regulation of 88 genes. RD caused up-regulation of 18 genes and down-regulation of one gene. The results were confirmed by hybridization to Affymetrix microarrays and by TaqMan PCR. Among the genes identified are genes involved in circadian regulation and the regulation of signaling pathways in the striatum. These results suggest that thyroid hormone is involved in regulation of striatal physiology at multiple control points. In addition, they may explain the beneficial effects of large doses of thyroid hormone in bipolar disorder

    Paradigms of Dynamic Control of Thyroid Hormone Signaling

    No full text
    corecore