2,174 research outputs found

    Additive Volume of Sets Contained in Few Arithmetic Progressions

    Get PDF
    A conjecture of Freiman gives an exact formula for the largest volume of a finite set AA of integers with given cardinality k=Ak = |A| and doubling T=2AT = |2A|. The formula is known to hold when T3k4T \le 3k-4, for some small range over 3k43k-4 and for families of structured sets called chains. In this paper we extend the formula to sets of every dimension and prove it for sets composed of three segments, giving structural results for the extremal case. A weaker extension to sets composed of a bounded number of segments is also discussed.Comment: 16 page

    Patient perceptions of virtual reality for pain relief in labor: A qualitative study

    Get PDF
    IntroductionLabor represents the most common reason for hospitalization, and most patients will use some form of pain management during their labor. While some studies have suggested that virtual reality (VR) may be an effective option for managing pain, more study is necessary to understand the patient experience of VR. The aim of this study is to characterize the effect of VR on patient perceptions of coping in labor and their descriptions of the VR experience.MethodologyA nested prospective, descriptive study within a randomized controlled trial of VR in laboring patients. We included nulliparous, term patients, having contractions at least every 5 min, a pain score on the Wong-Baker pain scale of 4–7, and who had been randomized to receive the 30 min virtual reality intervention in the trial. Subjects completed a childbirth self-efficacy inventory prior to the intervention. After the intervention, they completed a modified childbirth self-efficacy inventory related to VR and underwent a structured interview. Self-efficacy scores were compared using t-tests and qualitative, thematic analysis was performed using Dedoose.ResultsTwenty-one subjects received the VR intervention. Twenty subjects completed the post-intervention survey and structured interview; one declined due to discomfort. Subjects noted a significant increase in perceived degree to which VR could improve their self-efficacy in managing pain during labor. Thematic analysis revealed that subjects described the VR experience as allowing them to connect with their breathing, feeling more relaxed, and being distracted from pain. In total, 70% believed VR reduced their pain, 60% felt it reduced their anxiety, and 100% would recommend VR availability for laboring patients.ConclusionVR can improve patient self-efficacy for managing pain in labor. Future studies should focus on the content of the visualizations, optimized user experience and design, and effectiveness with ongoing exposure to VR content in labor

    Active Shape Modeling of the Hip in the Prediction of Incident Hip Fracture

    Get PDF
    The objective of this study was to evaluate right proximal femur shape as a risk factor for incident hip fracture using active shape modeling (ASM). A nested case-control study of white women 65 years of age and older enrolled in the Study of Osteoporotic Fractures (SOF) was performed. Subjects (n = 168) were randomly selected from study participants who experienced hip fracture during the follow-up period (mean 8.3 years). Controls (n = 231) had no fracture during follow-up. Subjects with baseline radiographic hip osteoarthritis were excluded. ASM of digitized right hip radiographs generated 10 independent modes of variation in proximal femur shape that together accounted for 95% of the variance in proximal femur shape. The association of ASM modes with incident hip fracture was analyzed by logistic regression. Together, the 10 ASM modes demonstrated good discrimination of incident hip fracture. In models controlling for age and body mass index (BMI), the area under receiver operating characteristic (AUROC) curve for hip shape was 0.813, 95% confidence interval (CI) 0.771–0.854 compared with models containing femoral neck bone mineral density (AUROC = 0.675, 95% CI 0.620–0.730), intertrochanteric bone mineral density (AUROC = 0.645, 95% CI 0.589–0.701), femoral neck length (AUROC = 0.631, 95% CI 0.573–0.690), or femoral neck width (AUROC = 0.633, 95% CI 0.574–0.691). The accuracy of fracture discrimination was improved by combining ASM modes with femoral neck bone mineral density (AUROC = 0.835, 95% CI 0.795–0.875) or with intertrochanteric bone mineral density (AUROC = 0.834, 95% CI 0.794–0.875). Hips with positive standard deviations of ASM mode 4 had the highest risk of incident hip fracture (odds ratio = 2.48, 95% CI 1.68–3.31, p < .001). We conclude that variations in the relative size of the femoral head and neck are important determinants of incident hip fracture. The addition of hip shape to fracture-prediction tools may improve the risk assessment for osteoporotic hip fractures. © 2011 American Society for Bone and Mineral Research

    Behavioural ecology at the spatial–social interface

    Full text link
    Spatial and social behaviour are fundamental aspects of an animal's biology, and their social and spatial environments are indelibly linked through mutual causes and shared consequences. We define the 'spatial-social interface' as intersection of social and spatial aspects of individuals' phenotypes and environments. Behavioural variation at the spatial-social interface has implications for ecological and evolutionary processes including pathogen transmission, population dynamics, and the evolution of social systems. We link spatial and social processes through a foundation of shared theory, vocabulary, and methods. We provide examples and future directions for the integration of spatial and social behaviour and environments. We introduce key concepts and approaches that either implicitly or explicitly integrate social and spatial processes, for example, graph theory, density-dependent habitat selection, and niche specialization. Finally, we discuss how movement ecology helps link the spatial-social interface. Our review integrates social and spatial behavioural ecology and identifies testable hypotheses at the spatial-social interface

    Secondary Eclipse Photometry of WASP-4b with Warm Spitzer

    Get PDF
    We present photometry of the giant extrasolar planet WASP-4b at 3.6 and 4.5 micron taken with the Infrared Array Camera on board the Spitzer Space Telescope as part of Spitzer's extended warm mission. We find secondary eclipse depths of 0.319+/-0.031% and 0.343+/-0.027% for the 3.6 and 4.5 micron bands, respectively and show model emission spectra and pressure-temperature profiles for the planetary atmosphere. These eclipse depths are well fit by model emission spectra with water and other molecules in absorption, similar to those used for TrES-3 and HD 189733b. Depending on our choice of model, these results indicate that this planet has either a weak dayside temperature inversion or no inversion at all. The absence of a strong thermal inversion on this highly irradiated planet is contrary to the idea that highly irradiated planets are expected to have inversions, perhaps due the presence of an unknown absorber in the upper atmosphere. This result might be explained by the modestly enhanced activity level of WASP-4b's G7V host star, which could increase the amount of UV flux received by the planet, therefore reducing the abundance of the unknown stratospheric absorber in the planetary atmosphere as suggested in Knutson et al. (2010). We also find no evidence for an offset in the timing of the secondary eclipse and place a 2 sigma upper limit on |ecos(omega)| of 0.0024, which constrains the range of tidal heating models that could explain this planet's inflated radius.Comment: 8 pages, 7 figures (some in color), accepted for publication in Ap

    A Spitzer Transmission Spectrum for the Exoplanet GJ 436b, Evidence for Stellar Variability, and Constraints on Dayside Flux Variations

    Get PDF
    In this paper we describe a uniform analysis of eight transits and eleven secondary eclipses of the extrasolar planet GJ 436b obtained in the 3.6, 4.5, and 8.0 micron bands using the IRAC instrument on the Spitzer Space Telescope between UT 2007 June 29 and UT 2009 Feb 4. We find that the best-fit transit depths for visits in the same bandpass can vary by as much as 8% of the total (4.7 sigma significance) from one epoch to the next. Although we cannot entirely rule out residual detector effects or a time-varying, high-altitude cloud layer in the planet's atmosphere as the cause of these variations, we consider the occultation of active regions on the star in a subset of the transit observations to be the most likely explanation. We reconcile the presence of magnetically active regions with the lack of significant visible or infrared flux variations from the star by proposing that the star's spin axis is tilted with respect to our line of sight, and that the planet's orbit is therefore likely to be misaligned. These observations serve to illustrate the challenges associated with transmission spectroscopy of planets orbiting late-type stars; we expect that other systems, such as GJ 1214, may display comparably variable transit depths. Our measured 8 micron secondary eclipse depths are consistent with a constant value, and we place a 1 sigma upper limit of 17% on changes in the planet's dayside flux in this band. Averaging over the eleven visits gives us an improved estimate of 0.0452% +/- 0.0027% for the secondary eclipse depth. We combine timing information from our observations with previously published data to produce a refined orbital ephemeris, and determine that the best-fit transit and eclipse times are consistent with a constant orbital period. [ABRIDGED]Comment: 26 pages, 18 figures, 7 tables in emulateapj format. Accepted for publication in Ap

    Thermal Emission and Tidal Heating of the Heavy and Eccentric Planet XO-3b

    Full text link
    We determined the flux ratios of the heavy and eccentric planet XO-3b to its parent star in the four IRAC bands of the Spitzer Space Telescope: 0.101% +- 0.004% at 3.6 micron; 0.143% +- 0.006% at 4.5 micron; 0.134% +- 0.049% at 5.8 micron and 0.150% +- 0.036% at 8.0 micron. The flux ratios are within [-2.2,0.3, -0.8, -1.7]-sigma of the model of XO-3b with a thermally inverted stratosphere in the 3.6 micron, 4.5 micron, 5.8 micron and 8.0 micron channels, respectively. XO-3b has a high illumination from its parent star (Fp ~(1.9 - 4.2) x 10^9 ergs cm^-2 s^-1) and is thus expected to have a thermal inversion, which we indeed observe. When combined with existing data for other planets, the correlation between the presence of an atmospheric temperature inversion and the substellar flux is insufficient to explain why some high insolation planets like TrES-3 do not have stratospheric inversions and some low insolation planets like XO-1b do have inversions. Secondary factors such as sulfur chemistry, atmospheric metallicity, amounts of macroscopic mixing in the stratosphere or even dynamical weather effects likely play a role. Using the secondary eclipse timing centroids we determined the orbital eccentricity of XO-3b as e = 0.277 +- 0.009. The model radius-age trajectories for XO-3b imply that at least some amount of tidal-heating is required to inflate the radius of XO-3b, and the tidal heating parameter of the planet is constrained to Qp < 10^6 .Comment: Accepted for publications in The Astrophysical Journa

    Tissue eosinophilia: a morphologic marker for assessing stromal invasion in laryngeal squamous neoplasms

    Get PDF
    BACKGROUND: The assessment of tumor invasion of underlying benign stroma in neoplastic squamous proliferation of the larynx may pose a diagnostic challenge, particularly in small biopsy specimens that are frequently tangentially sectioned. We studied whether thresholds of an eosinophilic response to laryngeal squamous neoplasms provides an adjunctive histologic criterion for determining the presence of invasion. METHODS: Eighty-seven(n = 87) cases of invasive squamous cell carcinoma and preinvasive squamous neoplasia were evaluated. In each case, the number of eosinophils per high power field(eosinophils/hpf), and per 10 hpf in the tissue adjacent to the neoplastic epithelium, were counted and tabulated. For statistical purposes, the elevated eosinophils were defined and categorized as: focally and moderately elevated (5–9 eos/hpf), focally and markedly increased(>10/hpf), diffusely and moderately elevated(5–19 eos/10hpf), and diffusely and markedly increased (>20/10hpf). RESULTS: In the invasive carcinoma, eosinophil counts were elevated focally and /or diffusely, more frequently seen than in non-invasive neoplastic lesions. The increased eosinophil counts, specifically >10hpf, and >20/10hpf, were all statistically significantly associated with stromal invasion. Greater than 10 eosinophils/hpf and/or >20 eosinophils/10hpf had highest predictive power, with a sensitivity, specificity and positive predictive value of 82%, 93%, 96% and 80%, 100% and 100%, respectively. Virtually, greater than 20 eosinophils/10 hpf was diagnostic for tumor invasion in our series. CONCLUSION: Our study suggests for the first time that the elevated eosinophil count in squamous neoplasia of the larynx is a morphologic feature associated with tumor invasion. When the number of infiltrating eosinophils exceeds 10/hpf and or >20/10 hpf in a laryngeal biopsy with squamous neoplasia, it represents an indicator for the possibility of tumor invasion. Similarly, the presence of eosinophils meeting these thresholds in an excisional specimen should prompt a thorough evaluation for invasiveness, when evidence of invasion is absent, or when invasion is suspected by conventional criteria in the initial sections

    Coronal Structure of Low-Mass Stars

    Full text link
    We investigate the change in stellar magnetic topology across the fully-convective boundary and its effects on coronal properties. We consider both the magnitude of the open flux that influences angular momentum loss in the stellar wind and X-ray emission measure. We use reconstructed maps of the radial magnetic field at the stellar surface and the potential-field source surface method to extrapolate a 3D coronal magnetic field for a sample of early-to-mid M dwarfs. During the magnetic reconstruction process it is possible to force a solution towards field geometries that are symmetric or antisymmetric about the equator but we demonstrate that this has only a modest impact on the coronal tracers mentioned above. We find that the dipole component of the field, which governs the large-scale structure, becomes increasingly strong as the stellar mass decreases, while the magnitude of the open (wind-bearing) magnetic flux is proportional to the magnitude of the reconstructed magnetic flux. By assuming a hydrostatic and isothermal corona we calculate X-ray emission measures (in magnitude and rotational modulation) for each star and, using observed stellar densities as a constraint, we reproduce the observed X-ray saturation at Ro < 0.1. We find that X-ray rotational modulation is not a good indicator of magnetic structure as it shows no trend with Rossby number but can be useful in discriminating between different assumptions on the field geometry.Comment: 12 pages, 10 figures, Published in MNRA

    Genome-Wide Analysis of Menin Binding Provides Insights into MEN1 Tumorigenesis

    Get PDF
    Multiple endocrine neoplasia type I (MEN1) is a familial cancer syndrome characterized primarily by tumors of multiple endocrine glands. The gene for MEN1 encodes a ubiquitously expressed tumor suppressor protein called menin. Menin was recently shown to interact with several components of a trithorax family histone methyltransferase complex including ASH2, Rbbp5, WDR5, and the leukemia proto-oncoprotein MLL. To elucidate menin's role as a tumor suppressor and gain insights into the endocrine-specific tumor phenotype in MEN1, we mapped the genomic binding sites of menin, MLL1, and Rbbp5, to approximately 20,000 promoters in HeLa S3, HepG2, and pancreatic islet cells using the strategy of chromatin-immunoprecipitation coupled with microarray analysis. We found that menin, MLL1, and Rbbp5 localize to the promoters of thousands of human genes but do not always bind together. These data suggest that menin functions as a general regulator of transcription. We also found that factor occupancy generally correlates with high gene expression but that the loss of menin does not result in significant changes in most transcript levels. One exception is the developmentally programmed transcription factor, HLXB9, which is overexpressed in islets in the absence of menin. Our findings expand the realm of menin-targeted genes several hundred-fold beyond that previously described and provide potential insights to the endocrine tumor bias observed in MEN1 patients
    corecore