19 research outputs found

    Fully conjugated [4] chrysaorene. Redox-coupled anion binding in a tetraradicaloid macrocycle

    Get PDF
    [4]Chrysaorene, a fully conjugated carbocyclic coronoid, is shown to be a low-bandgap π-conjugated system with a distinct open-shell character. The system shows good chemical stability and can be oxidized to well-defined radical cation and dication states. The cavity of [4]chrysaorene acts as an anion receptor toward halide ions with a particular selectivity toward iodides (Ka = 207 ± 6 M–1). The interplay between anion binding and redox chemistry is demonstrated using a 1H NMR analysis in solution. In particular, a well-resolved, paramagnetically shifted spectrum of the [4]chrysaorene radical cation is observed, providing evidence for the inner binding of the iodide. The radical cation–iodide adduct can be generated in thin solid films of [4] chrysaorene by simple exposure to diiodine vapor

    Structural studies of Schiff-base [2 + 2] macrocycles derived from 2,2′-oxydianiline and the ROP capability of their organoaluminium complexes

    Get PDF
    The molecular structures of a number of solvates of the [2 + 2] Schiff-base macrocycles {[2-(OH)-5-(R)-C6H2-1,3-(CH)2][O(2-C6H4N)2]}2 (R = Me L1H2, tBu L2H2, Cl L3H2), formed by reacting 2,6-dicarboxy-4-R-phenol with 2,2′-oxydianiline (2-aminophenylether), (2-NH2C6H4)2O, have been determined. Reaction of LnH2 with two equivalents of AlR′3 (R′ = Me, Et) afforded dinuclear alkylaluminium complexes [(AlR′2)2L1–3] (R = R′ = Me (1), R = tBu, R′ = Me (2), R = Cl, R′ = Me (3), R = Me, R′ = Et (4), R = tBu, R′ = Et (5), R = Cl, R′ = Et (6)). For comparative studies, reactions of two equivalents of AlR′3 (R′ = Me, Et) with the macrocycle derived from 2,2′-ethylenedianiline and 2,6-dicarboxy-R-phenols (R = Me L4H2, tBu L5H2) were conducted; the complexes [(AlMe)(AlMe2)L5]·2¼MeCN (7·2¼MeCN) and [(AlEt2)2L4] (8) were isolated. Use of limited AlEt3 with L3H2 or L5H2 afforded mononuclear bis(macrocyclic) complexes [Al(L3)(L3H)]·4toluene (9·4toluene) and [Al(L5)(L5H)]·5MeCN (10·5MeCN), respectively. Use of four equivalents of AlR′3 led to transfer of alkyl groups and isolation of the complexes [(AlR′2)4L1′–3′] (R = L2′, R′ = Me (11); L3′, R′ = Me (12); L1′, R′ = Et (13); L2′, R′ = Et (14); L3′, R′ = Et (15)), where L1′–3′ is the macrocycle resulting from double alkyl transfer to imine, namely {[2-(O)-5-(R)C6H2-1-(CH)-3-C(R′)H][(O)(2-(N)-2′-C6H4N)2]}2. Molecular structures of complexes 7·2¼MeCN, 8, 9·4toluene, 10·5MeCN and 11·1¾toluene·1¼hexane are reported. These complexes act as catalysts for the ring opening polymerisation (ROP) of ε-caprolactone and rac-lactide; high conversions were achieved over 30 min at 80 °C for ε-caprolactone, and 110 °C over 12 h for rac-lactide

    Ligand recognition processes in the formation of homochiral C3-symmetric LnL3 complexes of a chiral alkoxide

    No full text
    The reaction of a chiral racemic bidentate ligand HL1 (tBu2P(O)CH2CH(tBu)OH) with mid to late trivalent lanthanide cations affords predominantly homochiral lanthanide complexes (RRR)‐[Ln(L1)3] and (SSS)‐[Ln(L1)3]. A series of reactions are reported that demonstrate that the syntheses are under thermodynamic control, and driven by a ligand ‘self‐recognition’ process, in which the large asymmetric bidentate L1 ligands pack most favourably in a C3 geometry around the lanthanide cation. The synthesis of bis(L1) adducts [Ln(L1)2X] (X=N(SiMe3)2, OC6H3tBu‐2,6) is also reported. Analysis of the diastereomer mixtures shows that homochiral (L1)2 complexes are favoured but to a lesser extent. The complexes Ln(L1)3 and [Ln(L1)2(OC6H3tBu‐2,6)] have been studied as initiators for the polymerization of ε‐caprolactone and its copolymer with lactide, glycolide and its copolymer with lactide, and ε‐caprolactam
    corecore