144 research outputs found

    Optical Measurement System for Strain Field Ahead of a Crack Tip for Lattice Structures

    Get PDF
    The aim of the ARAMADAS project is to automate the construction of cuboctahedral lattice structures. Lattice materials are appealing for aerospace applications due to their strength and stiffness at ultra-light densities. However, in order for any material to be realistically considered for such environments, it must also be damage tolerant. The ability of a material to absorb damage is characterized by its fracture toughness, which remains poorly characterized for lattice materials. Consequently, the objective of this research is to develop an optical measurement system to experimentally validate the strain field ahead of a crack tip in architecture lattice materials. Although the ability to predict the strain field ahead of a crack tip has been investigated for continuum materials, such behaviour of three-dimensional architectures is under-investigated. As such, we will use a custom optical measurement system to track deformation of the voxels in a side-cracked plate fracture specimen. The system shall use 3D pose estimation, stereo imaging, and possibly color tracking, in combination with optical flow algorithms, to compute information regarding the three-dimensional movement movement of the lattice nodes during mechanical testing. Bench top experiments will validate the optical measurement system and characterize precision. Additionally, the effect of multiple cameras on precision, as well as system scalability will be investigated. Final results will compare measured lattice deformation with finite element predictions

    Modeling of Tunable Elastic Ultralight Aircraft

    Get PDF
    Aircraft weight is one of the most critical factors in the design and operation of modern vehicles. The ability to integrate ultra-light materials into the primary load bearing structures has the potential to reduce aircraft weight significantly. Ultralight materials tend to be lattice-based meta-materials that are difficult and computationally expensive to model. One of the advantages of meta-materials is to be able to tune or "program" their bulk material properties through the placement of heterogeneous components in the material. A large amount of time devoted to the simulation in the development time for the tuning of the material can be a barrier to the adoption of large scale lattice materials. In this paper, we present a workflow and analysis tool-set to provide first-order estimates for rapid development of engineered lattice materials for aerospace applications. We present results for estimating the displacement and maximum structural stresses

    Identification of a Functional Non-coding Variant in the GABA

    Get PDF
    GABA type-A (GABA-A) receptors containing the α2 subunit (GABRA2) are expressed in most brain regions and are critical in modulating inhibitory synaptic function. Genetic variation at the GABRA2 locus has been implicated in epilepsy, affective and psychiatric disorders, alcoholism and drug abuse. Gabra2 expression varies as a function of genotype and is modulated by sequence variants in several brain structures and populations, including F2 crosses originating from C57BL/6J (B6J) and the BXD recombinant inbred family derived from B6J and DBA/2J. Here we demonstrate a global reduction of GABRA2 brain protein and mRNA in the B6J strain relative to other inbred strains, and identify and validate the causal mutation in B6J. The mutation is a single base pair deletion located in an intron adjacent to a splice acceptor site that only occurs in the B6J reference genome. The deletion became fixed in B6J between 1976 and 1991 and is now pervasive in many engineered lines, BXD strains generated after 1991, the Collaborative Cross, and the majority of consomic lines. Repair of the deletion using CRISPR-Cas9-mediated gene editing on a B6J genetic background completely restored brain levels of GABRA2 protein and mRNA. Comparison of transcript expression in hippocampus, cortex, and striatum between B6J and repaired genotypes revealed alterations in GABA-A receptor subunit expression, especially in striatum. These results suggest that naturally occurring variation in GABRA2 levels between B6J and other substrains or inbred strains may also explain strain differences in anxiety-like or alcohol and drug response traits related to striatal function. Characterization of the B6J private mutation in the Gabra2 gene is of critical importance to molecular genetic studies in neurobiological research because this strain is widely used to generate genetically engineered mice and murine genetic populations, and is the most widely utilized strain for evaluation of anxiety-like, depression-like, pain, epilepsy, and drug response traits that may be partly modulated by GABRA2 function

    Anti-dense fine speckled 70 (DFS70) autoantibodies: correlates and increasing prevalence in the United States

    Get PDF
    ObjectiveRecent studies report high-titer anti-dense fine speckled 70 (DFS70) autoantibodies in persons with inflammatory conditions, but the clinical significance remains unclear. Our goals were to estimate anti-DFS70 autoantibody prevalence, identify correlates, and assess time trends.MethodsSerum antinuclear antibodies (ANA) were measured by indirect immunofluorescence assay on HEp-2 cells in 13,519 participants ≄12 years old from three time periods (1988–1991, 1999–2004, 2011–2012) of the National Health and Nutrition Examination Survey. ANA-positive participants with dense fine speckled staining were evaluated for anti-DFS70 antibodies by enzyme-linked immunosorbent assay. We used logistic models adjusted for survey-design variables to estimate period-specific anti-DFS70 antibody prevalence in the US, and we further adjusted for sex, age, and race/ethnicity to identify correlates and assess time trends.ResultsWomen were more likely than men (odds ratio (OR)=2.97), black persons were less likely than white persons (OR=0.60), and active smokers were less likely than nonsmokers (OR=0.28) to have anti-DFS70 antibodies. The prevalence of anti-DFS70 antibodies increased from 1.6% in 1988-1991 to 2.5% in 1999-2004 to 4.0% in 2011-2012, which corresponds to 3.2 million, 5.8 million, and 10.4 million seropositive individuals, respectively. This increasing time trend in the US population (P<0.0001) was modified in some subgroups and was not explained by concurrent changes in tobacco smoke exposure. Some, but not all, anti-DFS70 antibody correlates and time trends resembled those reported for total ANA.ConclusionMore research is needed to elucidate anti-DFS70 antibody triggers, their pathologic or potentially protective influences on disease, and their possible clinical implications

    LSST: from Science Drivers to Reference Design and Anticipated Data Products

    Get PDF
    (Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. LSST will be a wide-field ground-based system sited at Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg2^2 field of view, and a 3.2 Gigapixel camera. The standard observing sequence will consist of pairs of 15-second exposures in a given field, with two such visits in each pointing in a given night. With these repeats, the LSST system is capable of imaging about 10,000 square degrees of sky in a single filter in three nights. The typical 5σ\sigma point-source depth in a single visit in rr will be ∌24.5\sim 24.5 (AB). The project is in the construction phase and will begin regular survey operations by 2022. The survey area will be contained within 30,000 deg2^2 with ÎŽ<+34.5∘\delta<+34.5^\circ, and will be imaged multiple times in six bands, ugrizyugrizy, covering the wavelength range 320--1050 nm. About 90\% of the observing time will be devoted to a deep-wide-fast survey mode which will uniformly observe a 18,000 deg2^2 region about 800 times (summed over all six bands) during the anticipated 10 years of operations, and yield a coadded map to r∌27.5r\sim27.5. The remaining 10\% of the observing time will be allocated to projects such as a Very Deep and Fast time domain survey. The goal is to make LSST data products, including a relational database of about 32 trillion observations of 40 billion objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures available from https://www.lsst.org/overvie

    JBrowse: a dynamic web platform for genome visualization and analysis

    Get PDF
    BACKGROUND: JBrowse is a fast and full-featured genome browser built with JavaScript and HTML5. It is easily embedded into websites or apps but can also be served as a standalone web page. RESULTS: Overall improvements to speed and scalability are accompanied by specific enhancements that support complex interactive queries on large track sets. Analysis functions can readily be added using the plugin framework; most visual aspects of tracks can also be customized, along with clicks, mouseovers, menus, and popup boxes. JBrowse can also be used to browse local annotation files offline and to generate high-resolution figures for publication. CONCLUSIONS: JBrowse is a mature web application suitable for genome visualization and analysis

    Identification of a Functional Non-coding Variant in the GABAA Receptor α2 Subunit of the C57BL/6J Mouse Reference Genome: Major Implications for Neuroscience Research

    Get PDF
    GABA type-A (GABA-A) receptors containing the α2 subunit (GABRA2) are expressed in most brain regions and are critical in modulating inhibitory synaptic function. Genetic variation at the GABRA2 locus has been implicated in epilepsy, affective and psychiatric disorders, alcoholism and drug abuse. Gabra2 expression varies as a function of genotype and is modulated by sequence variants in several brain structures and populations, including F2 crosses originating from C57BL/6J (B6J) and the BXD recombinant inbred family derived from B6J and DBA/2J. Here we demonstrate a global reduction of GABRA2 brain protein and mRNA in the B6J strain relative to other inbred strains, and identify and validate the causal mutation in B6J. The mutation is a single base pair deletion located in an intron adjacent to a splice acceptor site that only occurs in the B6J reference genome. The deletion became fixed in B6J between 1976 and 1991 and is now pervasive in many engineered lines, BXD strains generated after 1991, the Collaborative Cross, and the majority of consomic lines. Repair of the deletion using CRISPR-Cas9-mediated gene editing on a B6J genetic background completely restored brain levels of GABRA2 protein and mRNA. Comparison of transcript expression in hippocampus, cortex, and striatum between B6J and repaired genotypes revealed alterations in GABA-A receptor subunit expression, especially in striatum. These results suggest that naturally occurring variation in GABRA2 levels between B6J and other substrains or inbred strains may also explain strain differences in anxiety-like or alcohol and drug response traits related to striatal function. Characterization of the B6J private mutation in the Gabra2 gene is of critical importance to molecular genetic studies in neurobiological research because this strain is widely used to generate genetically engineered mice and murine genetic populations, and is the most widely utilized strain for evaluation of anxiety-like, depression-like, pain, epilepsy, and drug response traits that may be partly modulated by GABRA2 function

    COSORE: A community database for continuous soil respiration and other soil‐atmosphere greenhouse gas flux data

    Get PDF
    Globally, soils store two to three times as much carbon as currently resides in the atmosphere, and it is critical to understand how soil greenhouse gas (GHG) emissions and uptake will respond to ongoing climate change. In particular, the soil‐to‐atmosphere CO2 flux, commonly though imprecisely termed soil respiration (RS), is one of the largest carbon fluxes in the Earth system. An increasing number of high‐frequency RS measurements (typically, from an automated system with hourly sampling) have been made over the last two decades; an increasing number of methane measurements are being made with such systems as well. Such high frequency data are an invaluable resource for understanding GHG fluxes, but lack a central database or repository. Here we describe the lightweight, open‐source COSORE (COntinuous SOil REspiration) database and software, that focuses on automated, continuous and long‐term GHG flux datasets, and is intended to serve as a community resource for earth sciences, climate change syntheses and model evaluation. Contributed datasets are mapped to a single, consistent standard, with metadata on contributors, geographic location, measurement conditions and ancillary data. The design emphasizes the importance of reproducibility, scientific transparency and open access to data. While being oriented towards continuously measured RS, the database design accommodates other soil‐atmosphere measurements (e.g. ecosystem respiration, chamber‐measured net ecosystem exchange, methane fluxes) as well as experimental treatments (heterotrophic only, etc.). We give brief examples of the types of analyses possible using this new community resource and describe its accompanying R software package
    • 

    corecore