120 research outputs found

    Evaluating the impact of integrated development: are we asking the right questions? A systematic review [version 2; referees: 2 approved, 1 approved with reservations]

    Get PDF
    Background: Emerging global transformations - including a new Sustainable Development Agenda - are revealing increasingly interrelated goals and challenges, poised to be addressed by similarly integrated, multi-faceted solutions. Research to date has focused on determining the effectiveness of these approaches, yet a key question remains: are synergistic effects produced by integrating two or more sectors?  We systematically reviewed impact evaluations on integrated development interventions to assess whether synergistic, amplified impacts are being measured and evaluated. Methods: The International Initiative for Impact Evaluation’s (3ie) Impact Evaluation Repository comprised our sampling frame (n = 4,339). Following PRISMA guidelines, we employed a three-stage screening and review process. Results: We identified 601 journal articles that evaluated integrated interventions. Seventy percent used a randomized design to assess impact with regard to whether the intervention achieved its desired outcomes. Only 26 of these evaluations, however, used a full factorial design to statistically detect any synergistic effects produced by integrating sectors. Of those, seven showed synergistic effects. Conclusions: To date, evaluations of integrated development approaches have demonstrated positive impacts in numerous contexts, but gaps remain with regard to documenting whether integrated programming produces synergistic, amplified outcomes. Research on these program models needs to extend beyond impact only, and more explicitly examine and measure the synergies and efficiencies associated with linking two or more sectors. Doing so will be critical for identifying effective integrated development strategies that will help achieve the multi-sector SDG agenda

    Managing diabetes in preschool children

    Get PDF
    This article is a new chapter in the ISPAD Clinical Practice Consensus Guidelines Compendium. The complete set of guidelines can be found for free download at www.ispad.org. The evidence grading system used in the ISPAD Guidelines is the same as that used by the American Diabetes Association

    Direct Phenotypic Screening in Mice: Identification of Individual, Novel Antinociceptive Compounds from a Library of 734 821 Pyrrolidine Bis-piperazines

    Get PDF
    The hypothesis in the current study is that the simultaneous direct in vivo testing of thousands to millions of systematically arranged mixture-based libraries will facilitate the identification of enhanced individual compounds. Individual compounds identified from such libraries may have increased specificity and decreased side effects early in the discovery phase. Testing began by screening ten diverse scaffolds as single mixtures (ranging from 17 340 to 4 879 681 compounds) for analgesia directly in the mouse tail withdrawal model. The “all X” mixture representing the library TPI-1954 was found to produce significant antinociception and lacked respiratory depression and hyperlocomotor effects using the Comprehensive Laboratory Animal Monitoring System (CLAMS). The TPI-1954 library is a pyrrolidine bis-piperazine and totals 738 192 compounds. This library has 26 functionalities at the first three positions of diversity made up of 28 392 compounds each (26 × 26 × 42) and 42 functionalities at the fourth made up of 19 915 compounds each (26 × 26 × 26). The 120 resulting mixtures representing each of the variable four positions were screened directly in vivo in the mouse 55 °C warm-water tail-withdrawal assay (ip administration). The 120 samples were then ranked in terms of their antinociceptive activity. The synthesis of 54 individual compounds was then carried out. Nine of the individual compounds produced dose-dependent antinociception equivalent to morphine. In practical terms what this means is that one would not expect multiexponential increases in activity as we move from the all-X mixture, to the positional scanning libraries, to the individual compounds. Actually because of the systematic formatting one would typically anticipate steady increases in activity as the complexity of the mixtures is reduced. This is in fact what we see in the current study. One of the final individual compounds identified, TPI 2213-17, lacked significant respiratory depression, locomotor impairment, or sedation. Our results represent an example of this unique approach for screening large mixture-based libraries directly in vivo to rapidly identify individual compounds

    Chronic Obstructive Pulmonary Disease and Lung Cancer: Underlying Pathophysiology and New Therapeutic Modalities

    Get PDF
    Chronic obstructive pulmonary disease (COPD) and lung cancer are major lung diseases affecting millions worldwide. Both diseases have links to cigarette smoking and exert a considerable societal burden. People suffering from COPD are at higher risk of developing lung cancer than those without, and are more susceptible to poor outcomes after diagnosis and treatment. Lung cancer and COPD are closely associated, possibly sharing common traits such as an underlying genetic predisposition, epithelial and endothelial cell plasticity, dysfunctional inflammatory mechanisms including the deposition of excessive extracellular matrix, angiogenesis, susceptibility to DNA damage and cellular mutagenesis. In fact, COPD could be the driving factor for lung cancer, providing a conducive environment that propagates its evolution. In the early stages of smoking, body defences provide a combative immune/oxidative response and DNA repair mechanisms are likely to subdue these changes to a certain extent; however, in patients with COPD with lung cancer the consequences could be devastating, potentially contributing to slower postoperative recovery after lung resection and increased resistance to radiotherapy and chemotherapy. Vital to the development of new-targeted therapies is an in-depth understanding of various molecular mechanisms that are associated with both pathologies. In this comprehensive review, we provide a detailed overview of possible underlying factors that link COPD and lung cancer, and current therapeutic advances from both human and preclinical animal models that can effectively mitigate this unholy relationship

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Impact of Optimized Breastfeeding on the Costs of Necrotizing Enterocolitis in Extremely Low Birthweight Infants

    Get PDF
    To estimate risk of NEC for ELBW infants as a function of preterm formula and maternal milk (MM) intake and calculate the impact of suboptimal feeding on NEC incidence and costs

    The protocol for the Families First Edmonton trial (FFE): a randomized community-based trial to compare four service integration approaches for families with low-income

    Full text link
    corecore