86 research outputs found

    Correlation of Incisura Anatomy With Syndesmotic Malreduction

    Get PDF
    Background: The anatomy of the syndesmosis is variable, yet little is known on the correlation between differences in anatomy and syndesmosis reduction results. The aim of this study was to analyze the correlation between syndesmotic anatomy and the modes of syndesmotic malreduction. Methods: Bilateral postreduction ankle computed tomography (CT) scans of 72 patients treated for fractures with syndesmotic disruption were analyzed. Incisura depth, fibular engagement into the incisura, and incisura rotation were correlated with degree of syndesmotic malreduction in coronal and sagittal planes as well as rotational malreduction. Results: Clinically relevant malreduction in the coronal plane, sagittal plane, and rotation affected 8.3%, 27.8%, and 19.4% of syndesmoses, respectively. The syndesmoses with a deep incisura and the fibula not engaged into the tibial incisura were at risk of overcompression, anteverted incisuras at risk of anterior fibular translation, and retroverted incisuras at risk of posterior fibular translation. Conclusions: Certain morphologic configurations of the tibial incisura increased the risk of specific syndesmotic malreduction patterns. Level of Evidence: Level III, comparative study

    Preparation of nano-gypsum from anhydrite nanoparticles: Strongly increased Vickers hardness and formation of calcium sulfate nano-needles

    Get PDF
    The preparation of calcium sulfate by flame synthesis resulted in the continuous production of anhydrite nanoparticles of 20-50nm size. After compaction and hardening by the addition of water, the anhydrite nanoparticles reacted to nano-gypsum which was confirmed by X-ray diffraction, diffuse reflectance IR spectroscopy and thermal analysis. Mechanical properties were investigated in terms of Vickers hardness and revealed an up to three times higher hardness of nano-gypsum if compared to conventional micron-sized construction material. The improved mechanical properties of nano-gypsum could in part be due to the presence of calcium sulfate nano-needles in the nano-gypsum as showed by electron microscop

    Rainforest transformation reallocates energy from green to brown food webs.

    Get PDF
    Terrestrial animal biodiversity is increasingly being lost because of land-use change1,2. However, functional and energetic consequences aboveground and belowground and across trophic levels in megadiverse tropical ecosystems remain largely unknown. To fill this gap, we assessed changes in energy fluxes across 'green' aboveground (canopy arthropods and birds) and 'brown' belowground (soil arthropods and earthworms) animal food webs in tropical rainforests and plantations in Sumatra, Indonesia. Our results showed that most of the energy in rainforests is channelled to the belowground animal food web. Oil palm and rubber plantations had similar or, in the case of rubber agroforest, higher total animal energy fluxes compared to rainforest but the key energetic nodes were distinctly different: in rainforest more than 90% of the total animal energy flux was channelled by arthropods in soil and canopy, whereas in plantations more than 50% of the energy was allocated to annelids (earthworms). Land-use change led to a consistent decline in multitrophic energy flux aboveground, whereas belowground food webs responded with reduced energy flux to higher trophic levels, down to -90%, and with shifts from slow (fungal) to fast (bacterial) energy channels and from faeces production towards consumption of soil organic matter. This coincides with previously reported soil carbon stock depletion3. Here we show that well-documented animal biodiversity declines with tropical land-use change4-6 are associated with vast energetic and functional restructuring in food webs across aboveground and belowground ecosystem compartments

    ADAM10 and ADAM17 promote SARS‐CoV‐2 cell entry and spike protein‐mediated lung cell fusion

    Get PDF
    The severe‐acute‐respiratory‐syndrome‐coronavirus‐2 (SARS‐CoV‐2) is the causative agent of COVID‐19, but host cell factors contributing to COVID‐19 pathogenesis remain only partly understood. We identify the host metalloprotease ADAM17 as a facilitator of SARS‐CoV‐2 cell entry and the metalloprotease ADAM10 as a host factor required for lung cell syncytia formation, a hallmark of COVID‐19 pathology. ADAM10 and ADAM17, which are broadly expressed in the human lung, cleave the SARS‐CoV‐2 spike protein (S) in vitro, indicating that ADAM10 and ADAM17 contribute to the priming of S, an essential step for viral entry and cell fusion. ADAM protease‐targeted inhibitors severely impair lung cell infection by the SARS‐CoV‐2 variants of concern alpha, beta, delta, and omicron and also reduce SARS‐CoV‐2 infection of primary human lung cells in a TMPRSS2 protease‐independent manner. Our study establishes ADAM10 and ADAM17 as host cell factors for viral entry and syncytia formation and defines both proteases as potential targets for antiviral drug development

    Predicting bee community responses to land-use changes: Effects of geographic and taxonomic biases

    Get PDF
    Land-use change and intensification threaten bee populations worldwide, imperilling pollination services. Global models are needed to better characterise, project, and mitigate bees' responses to these human impacts. The available data are, however, geographically and taxonomically unrepresentative; most data are from North America and Western Europe, overrepresenting bumblebees and raising concerns that model results may not be generalizable to other regions and taxa. To assess whether the geographic and taxonomic biases of data could undermine effectiveness of models for conservation policy, we have collated from the published literature a global dataset of bee diversity at sites facing land-use change and intensification, and assess whether bee responses to these pressures vary across 11 regions (Western, Northern, Eastern and Southern Europe; North, Central and South America; Australia and New Zealand; South East Asia; Middle and Southern Africa) and between bumblebees and other bees. Our analyses highlight strong regionally-based responses of total abundance, species richness and Simpson's diversity to land use, caused by variation in the sensitivity of species and potentially in the nature of threats. These results suggest that global extrapolation of models based on geographically and taxonomically restricted data may underestimate the true uncertainty, increasing the risk of ecological surprises

    Modeling the multi-functionality of African savanna landscapes under global change

    Get PDF
    Various recent publications have indicated that accelerated global change and its negative impacts on terrestrial ecosystems in Southern Africa urgently demand quantitative assessment and modelling of a range of ecosystem services on which rural communities depend. Information is needed on how these Ecosystem Services (ES) can be enhanced through sustainable land management interventions and enabling policies. Yet, it has also been claimed that, to date, the required system analyses, data and tools to quantify important interactions between biophysical and socio-economic components, their resilience and ability to contribute to livelihood needs do not exist. We disagree, but acknowledge that building an appropriate integrative modelling framework for assessing the multi-functionality of savanna landscapes is challenging. Yet, in this Letter-to-the-Editor, we show that a number of suitable modelling components and required data already exist and can be mobilized and integrated with emerging data and tools to provide answers to problem-driven questions posed by stakeholders on land management and policy issues.German Federal Ministry of Education and Researchhttps://onlinelibrary.wiley.com/journal/1099145xhj2022Zoology and Entomolog

    Reducing Fertilizer and Avoiding Herbicides in Oil Palm Plantations—Ecological and Economic Valuations

    Get PDF
    Oil palm plantations are intensively managed agricultural systems that increasingly dominate certain tropical regions. Oil palm monocultures have been criticized because of their reduced biodiversity compared to the forests they historically replaced, and because of their negative impact on soils, water, and climate. We experimentally test whether less intensive management schemes may enhance biodiversity and lessen detrimental effects on the environment while maintaining high yields. We compare reduced vs. conventional fertilization, as well as mechanical vs. chemical weed control (with herbicides) in a long-term, full-factorial, multidisciplinary experiment. We conducted the experiment in an oil palm company estate in Sumatra, Indonesia, and report the results of the first 2 years. We measured soil nutrients and functions, surveyed above- and below-ground organisms, tracked oil palm condition and productivity, and calculated plantation gross margins. Plants, aboveground arthropods, and belowground animals were positively affected by mechanical vs. chemical weed control, but we could not detect effects on birds and bats. There were no detectable negative effects of reduced fertilization or mechanical weeding on oil palm yields, fine roots, or leaf area index. Also, we could not detect detrimental effects of the reduced fertilization and mechanical weeding on soil nutrients and functions (mineral nitrogen, bulk density, and litter decomposition), but water infiltration and base saturation tended to be higher under mechanical weeding, while soil moisture, and microbial biomass varied with treatment. Economic performance, measured as gross margins, was higher under reduced fertilization. There might be a delayed response of oil palm to the different management schemes applied, so results of future years may confirm whether this is a sustainable management strategy. Nevertheless, the initial effects of the experiment are encouraging to consider less intensive management practices as economically and ecologically viable options for oil palm plantations
    • 

    corecore