304 research outputs found
Comparison of stimulation patterns for FES-cycling using measures of oxygen cost and stimulation cost
<b>Aim</b><p></p>
The energy efficiency of FES-cycling in spinal cord injured subjects is very much lower than that of normal cycling, and efficiency is dependent upon the parameters of muscle stimulation. We investigated measures which can be used to evaluate the effect on cycling performance of changes in stimulation parameters, and which might therefore be used to optimise them. We aimed to determine whether oxygen cost and stimulation cost measurements are sensitive enough to allow discrimination between the efficacy of different activation ranges for stimulation of each muscle group during constant-power cycling. <p></p>
<b>Methods</b><p></p>
We employed a custom FES-cycling ergometer system, with accurate control of cadence and stimulated exercise workrate. Two sets of muscle activation angles (“stimulation patterns”), denoted “P1” and “P2”, were applied repeatedly (eight times each) during constant-power cycling, in a repeated measures design with a single paraplegic subject. Pulmonary oxygen uptake was measured in real time and used to determine the oxygen cost of the exercise. A new measure of stimulation cost of the exercise is proposed, which represents the total rate of stimulation charge applied to the stimulated muscle groups during cycling. A number of energy-efficiency measures were also estimated. <p></p>
<b>Results</b><p></p>
Average oxygen cost and stimulation cost of P1 were found to be significantly lower than those for P2 (paired <i>t</i>-test, <i>p</i> < 0.05): oxygen costs were 0.56 ± 0.03 l min<sup>−1</sup> and 0.61 ± 0.04 l min<sup>−1</sup>(mean ± S.D.), respectively; stimulation costs were 74.91 ± 12.15 mC min<sup>−1</sup> and 100.30 ± 14.78 mC min<sup>−1</sup> (mean ± S.D.), respectively. Correspondingly, all efficiency estimates for P1 were greater than those for P2. <p></p>
<b>Conclusion</b><p></p>
Oxygen cost and stimulation cost measures both allow discrimination between the efficacy of different muscle activation patterns during constant-power FES-cycling. However, stimulation cost is more easily determined in real time, and responds more rapidly and with greatly improved signal-to-noise properties than the ventilatory oxygen uptake measurements required for estimation of oxygen cost. These measures may find utility in the adjustment of stimulation patterns for achievement of optimal cycling performance. <p></p>
Recommended from our members
The Propagation of Coherent Waves Across Multiple Solar Magnetic Pores
Solar pores are efficient magnetic conduits for propagating magnetohydrodynamic wave energy into the outer regions of the solar atmosphere. Pore observations often contain isolated and/or unconnected structures, preventing the statistical examination of wave activity as a function of the atmospheric height. Here, using high-resolution observations acquired by the Dunn Solar Telescope, we examine photospheric and chromospheric wave signatures from a unique collection of magnetic pores originating from the same decaying sunspot. Wavelet analysis of high-cadence photospheric imaging reveals the ubiquitous presence of slow sausage-mode oscillations, coherent across all photospheric pores through comparisons of intensity and area fluctuations, producing statistically significant in-phase relationships. The universal nature of these waves allowed an investigation of whether the wave activity remained coherent as they propagate. Utilizing bisector Doppler velocity analysis of the Ca ii 8542 Å line, alongside comparisons of the modeled spectral response function, we find fine-scale 5 mHz power amplification as the waves propagate into the chromosphere. Phase angles approaching zero degrees between co-spatial line depths spanning different line depths indicate standing sausage modes following reflection against the transition region boundary. Fourier analysis of chromospheric velocities between neighboring pores reveals the annihilation of the wave coherency observed in the photosphere, with examination of the intensity and velocity signals from individual pores indicating they behave as fractured waveguides, rather than monolithic structures. Importantly, this work highlights that wave morphology with atmospheric height is highly complex, with vast differences observed at chromospheric layers, despite equivalent wave modes being introduced into similar pores in the photosphere
Improving open and rigorous science: Ten key future research opportunities related to rigor, reproducibility, and transparency in scientific research
Background: As part of a coordinated effort to expand research activity around rigor, reproducibility, and transparency (RRT) across scientific disciplines, a team of investigators at the Indiana University School of Public Health-Bloomington hosted a workshop in October 2019 with international leaders to discuss key opportunities for RRT research. Objective: The workshop aimed to identify research priorities and opportunities related to RRT. Design: Over two-days, workshop attendees gave presentations and participated in three working groups: (1) Improving Education & Training in RRT, (2) Reducing Statistical Errors and Increasing Analytic Transparency, and (3) Looking Outward: Increasing Truthfulness and Accuracy of Research Communications. Following small-group discussions, the working groups presented their findings, and participants discussed the research opportunities identified. The investigators compiled a list of research priorities, which were circulated to all participants for feedback. Results: Participants identified the following priority research questions: (1) Can RRT-focused statistics and mathematical modeling courses improve statistics practice?; (2) Can specialized training in scientific writing improve transparency?; (3) Does modality (e.g. face to face, online) affect the efficacy RRT-related education?; (4) How can automated programs help identify errors more efficiently?; (5) What is the prevalence and impact of errors in scientific publications (e.g., analytic inconsistencies, statistical errors, and other objective errors)?; (6) Do error prevention workflows reduce errors?; (7) How do we encourage post-publication error correction?; (8) How does 'spin' in research communication affect stakeholder understanding and use of research evidence?; (9) Do tools to aid writing research reports increase comprehensiveness and clarity of research reports?; and (10) Is it possible to inculcate scientific values and norms related to truthful, rigorous, accurate, and comprehensive scientific reporting? Conclusion: Participants identified important and relatively unexplored questions related to improving RRT. This list may be useful to the scientific community and investigators seeking to advance meta-science (i.e. research on research)
Multiwavelength studies of MHD waves in the solar chromosphere: An overview of recent results
The chromosphere is a thin layer of the solar atmosphere that bridges the
relatively cool photosphere and the intensely heated transition region and
corona. Compressible and incompressible waves propagating through the
chromosphere can supply significant amounts of energy to the interface region
and corona. In recent years an abundance of high-resolution observations from
state-of-the-art facilities have provided new and exciting ways of
disentangling the characteristics of oscillatory phenomena propagating through
the dynamic chromosphere. Coupled with rapid advancements in
magnetohydrodynamic wave theory, we are now in an ideal position to thoroughly
investigate the role waves play in supplying energy to sustain chromospheric
and coronal heating. Here, we review the recent progress made in
characterising, categorising and interpreting oscillations manifesting in the
solar chromosphere, with an impetus placed on their intrinsic energetics.Comment: 48 pages, 25 figures, accepted into Space Science Review
Formation of superdense hadronic matter in high energy heavy-ion collisions
We present the detail of a newly developed relativistic transport model (ART
1.0) for high energy heavy-ion collisions. Using this model, we first study the
general collision dynamics between heavy ions at the AGS energies. We then show
that in central collisions there exists a large volume of sufficiently
long-lived superdense hadronic matter whose local baryon and energy densities
exceed the critical densities for the hadronic matter to quark-gluon plasma
transition. The size and lifetime of this matter are found to depend strongly
on the equation of state. We also investigate the degree and time scale of
thermalization as well as the radial flow during the expansion of the
superdense hadronic matter. The flow velocity profile and the temperature of
the hadronic matter at freeze-out are extracted. The transverse momentum and
rapidity distributions of protons, pions and kaons calculated with and without
the mean field are compared with each other and also with the preliminary data
from the E866/E802 collaboration to search for experimental observables that
are sensitive to the equation of state. It is found that these inclusive,
single particle observables depend weakly on the equation of state. The
difference between results obtained with and without the nuclear mean field is
only about 20\%. The baryon transverse collective flow in the reaction plane is
also analyzed. It is shown that both the flow parameter and the strength of the
``bounce-off'' effect are very sensitive to the equation of state. In
particular, a soft equation of state with a compressibility of 200 MeV results
in an increase of the flow parameter by a factor of 2.5 compared to the cascade
case without the mean field. This large effect makes it possible to distinguish
the predictions from different theoretical models and to detect the signaturesComment: 55 pages, latex, + 39 figures available upon reques
Detector Description and Performance for the First Coincidence Observations between LIGO and GEO
For 17 days in August and September 2002, the LIGO and GEO interferometer
gravitational wave detectors were operated in coincidence to produce their
first data for scientific analysis. Although the detectors were still far from
their design sensitivity levels, the data can be used to place better upper
limits on the flux of gravitational waves incident on the earth than previous
direct measurements. This paper describes the instruments and the data in some
detail, as a companion to analysis papers based on the first data.Comment: 41 pages, 9 figures 17 Sept 03: author list amended, minor editorial
change
B^0-\bar{B}^0 mixing and B \to X_s \gamma decay in the third type 2HDM: effects of NLO QCD contributions
In this paper, we calculated the next-to-leading order (NLO) new physics
contributions to the mass splitting \dmd and the branching ratio \brbxsga
induced by the charged Higgs loop diagrams in the third type of
two-Higgs-doublet models (model III) and draw the constraints on the free
parameters of model III. For the model III under consideration, we found that
(a) an upper limit |\ltt|\leq 1.7 is obtained from the precision data of
\dmd=0.502 \pm 0.007 ps^{-1}, while |\ltt| \approx 0.5 is favored
phenomenologicaly; (b) for decay, the NLO QCD contributions
tend to cancel the LO new physics contributions; (c) a light charged Higgs
boson with a mass around or even less than 200 GeV is still allowed at NLO
level by the measured branching ratio \brbxsga: numerically, 188 \leq \mh
\leq 215 GeV for (|\ltt|,|\lbb|)=(0.5,18); (d) the NLO QCD contributions
tend to cancel the LO contributions effectively, the lower limit on \mh is
consequently decreased by about 200 GeV; (e) the allowed region of \mh will
be shifted toward heavy mass end for a non-zero relative phase between
the Yukawa couplings \ltt and \lbb. The numerical results for the
conventional model II are also presented for the sake of a comparison.Comment: 42 pages, 18 eps figures, Revtex, new references adde
Production of singlet P-wave and states
No spin-singlet quarkonium state has yet been observed. In this
paper we discuss the production of the singlet P-wave and
states and . We consider two possibilities. In the first the
states are produced via the electromagnetic cascades \ups(3S) \to
\eta_b(2S) + \gamma \to h_b + \gamma \gamma \to \eta_b +\gamma\gamma\gamma
and . A more promising process consists of single pion
transition to the state followed by the radiative transition to the
state: \ups(3S)\to h_b + \pi^0 \to \eta_b + \pi^0 +\gamma and . For a million \ups(3S) or
's produced we expect these processes to produce several hundred events.Comment: 13 pages, LaTeX, 1 figure, to be published Phys. Rev. D. Some
equation numbers and one table number correcte
Methane and carbon dioxide fluxes and their regional scalability for the European Arctic wetlands during the MAMM project in summer 2012
Airborne and ground-based measurements of methane (CH4), carbon dioxide (CO2) and boundary layer thermodynamics were recorded over the Fennoscandian landscape (67–69.5° N, 20–28° E) in July 2012 as part of the MAMM (Methane and other greenhouse gases in the Arctic: Measurements, process studies and Modelling) field campaign. Employing these airborne measurements and a simple boundary layer box model, net regional-scale (~ 100 km) fluxes were calculated to be 1.2 ± 0.5 mg CH4 h−1 m−2 and −350 ± 143 mg CO2 h−1 m−2. These airborne fluxes were found to be relatively consistent with seasonally averaged surface chamber (1.3 ± 1.0 mg CH4 h−1 m−2) and eddy covariance (1.3 ± 0.3 mg CH4 h−1 m−2 and −309 ± 306 mg CO2 h−1 m−2) flux measurements in the local area. The internal consistency of the aircraft-derived fluxes across a wide swath of Fennoscandia coupled with an excellent statistical comparison with local seasonally averaged ground-based measurements demonstrates the potential scalability of such localised measurements to regional-scale representativeness. Comparisons were also made to longer-term regional CH4 climatologies from the JULES (Joint UK Land Environment Simulator) and HYBRID8 land surface models within the area of the MAMM campaign. The average hourly emission flux output for the summer period (July–August) for the year 2012 was 0.084 mg CH4 h−1 m−2 (minimum 0.0 and maximum 0.21 mg CH4 h−1 m−2) for the JULES model and 0.088 mg CH4 h−1 m−2 (minimum 0.0008 and maximum 1.53 mg CH4 h−1 m−2) for HYBRID8. Based on these observations both models were found to significantly underestimate the CH4 emission flux in this region, which was linked to the under-prediction of the wetland extents generated by the models
Resposta da produtividade de grãos e outras características agronômicas do trigo EMBRAPA-22 irrigado ao nitrogênio em cobertura
As doses e a época de aplicação do nitrogênio (N) podem influenciar as características agronômicas do trigo (Triticum aestivum L.) irrigado e, conseqüentemente, a produtividade de grãos. Neste sentido, foram instalados dois experimentos na Estação Experimental da Universidade Federal de Viçosa, localizada em Coimbra (MG), em 1995 e 1996. Os tratamentos foram constituídos pela combinação de quatro doses de N (30, 60, 90 e 120 kg ha-1), quatro formas de parcelamento (dose total aos 20 dias da emergência (DAE); ½ aos 20 + ½ aos 40 DAE; 1/3 aos 20 + 2/3 aos 40 DAE e 2/3 aos 20 + 1/3 aos 40 DAE) e uma testemunha (sem N em cobertura), dispostos em esquema fatorial 4 x 4 + 1, no delineamento em blocos casualizados com quatro repetições. A altura e o acamamento das plantas, a biomassa seca, o índice de colheita, a massa de mil grãos, o peso hectolítrico e a produtividade de grãos foram influenciados pelas doses de N. Em 1996, o número de espigas por metro quadrado e o número de perfilhos férteis por planta diminuíram, em conseqüência do acamamento precoce das plantas, enquanto o número de grãos por espiga e o número de grãos por metro quadrado aumentaram com o incremento nas doses de N. As formas de parcelamento influenciaram somente o acamamento das plantas
- …