4 research outputs found

    Distance decay 2.0-A global synthesis of taxonomic and functional turnover in ecological communities

    Get PDF
    Aim: Understanding the variation in community composition and species abundances (i.e., beta-diversity) is at the heart of community ecology. A common approach to examine beta-diversity is to evaluate directional variation in community composition by measuring the decay in the similarity among pairs of communities along spatial or environmental distance. We provide the first global synthesis of taxonomic and functional distance decay along spatial and environmental distance by analysing 148 datasets comprising different types of organisms and environments. Location: Global. Time period: 1990 to present. Major taxa studied: From diatoms to mammals. Method: We measured the strength of the decay using ranked Mantel tests (Mantel r) and the rate of distance decay as the slope of an exponential fit using generalized linear models. We used null models to test whether functional similarity decays faster or slower than expected given the taxonomic decay along the spatial and environmental distance. We also unveiled the factors driving the rate of decay across the datasets, including latitude, spatial extent, realm and organismal features. Results: Taxonomic distance decay was stronger than functional distance decay along both spatial and environmental distance. Functional distance decay was random given the taxonomic distance decay. The rate of taxonomic and functional spatial distance decay was fastest in the datasets from mid-latitudes. Overall, datasets covering larger spatial extents showed a lower rate of decay along spatial distance but a higher rate of decay along environmental distance. Marine ecosystems had the slowest rate of decay along environmental distances. Main conclusions: In general, taxonomic distance decay is a useful tool for biogeographical research because it reflects dispersal-related factors in addition to species responses to climatic and environmental variables. Moreover, functional distance decay might be a cost-effective option for investigating community changes in heterogeneous environments

    Solitary ascidians found on complex settlement plates in the Red Sea and the Mediterranean

    No full text
    We constructed unique settlement plates, each representing six different niches, to assess ascidian niche breadth, and deployed them in similar habitats in the Red Sea and the Mediterranean. Settlement plate design: To estimate and compare habitat niche breadth between species, we designed settlement plates each representing different niches, based on six substrate squares measures 10 x 10 cm as our basic units. The base of the plate was built from stainless steel, and the substrate squares were glued to the base. We used three substrate types within two current /light regimes to allocate six different "niches” to each settlement plate, with total measurement of 30 x 20 cm. The three substrate types were constructed from three materials: cement with sea shells, non-glazed ceramic and recycled plastic. Since substrate is a major factor for fouling species, we selected three materials that differ substantially from each other: plastic is smooth, the non-glazed ceramic is rough but homogenous, and the cement with sea shells is complex and heterogeneous. The two current and light regimes were achieved by placing the plates facing the pillars, and leaving the upper part of the plate open from three directions (from above and from either side) while the lower part remained open from the bottom only and was thus dark and with restricted water flow. We were interested in the relative patterns across species to these niche differences, and hence do not attempt to quantify the exact differences in light and flow between the upper and lower sections. Nevertheless, light measurements confirm the lower side was ~10 time darker than the upper side. We used all possible permutations (36 in total) of substrate type ordering within each current and light regime treatment in constructing the settlement plates. Study sites: The same experimental designs were used in the eastern Mediterranean Sea and northern Red Sea to facilitate direct comparisons. In the Mediterranean, the settlement plates were deployed on three pillars of the Israel Electric Company pier (32°28â€Č N 34°53 E), and in the Red Sea, on three pillars of the Israeli oil port (29°31â€Č N 34°56â€Č E), with minimal distance of 10 meters between pillars. At both sites, the plates were deployed at about 15 meters depth, with the seabed at 20 meters, in order to avoid any bottom effects such as sedimentation. The depth of 15 meters was chosen in order to minimize disturbance to the experiment by the strong winter storms, while still providing sufficient underwater work time when using scuba. As public entrance to both sites is prohibited, the experiment was subjected to minimal human disturbance. Pillars at both sites are located in the open sea (as opposed to closed harbors) and are >30 years old, therefore the fauna found on them represent a climax community. Study design: The experiment lasted one year, from February 2014 to February 2015. For analyses, we combined two types of plates, seasonal and full-year. We deployed 15 full-year plates at each site and these remained undisturbed for the entire year of the experiment. In addition, 10 seasonal plates were replaced every three months, totaling 40 seasonal settlement plates at each site. At the end of each experiment, the settlement plates were removed and taken to the lab for taxonomic identification (using Nikon SMZ18 stereomicroscope and dissection tools). Solitary ascidians were counted and identified to species level where possible (649 out of 658 individuals). In addition, we took monthly underwater photos of all settlement plates. Plates were photographed from the exact same distance and angle using a custom-made tripod. These photos were used in order to identify individuals that were present on the plates during the experiment but did not survive to the point of plate removal, in order to increase sample size for the niche breadth calculations. Unfortunately, only four individuals were added using these photos. We categorized the species found in the Red Sea as Lessepsian (species that are known to establish populations in the Mediterranean) or non-Lessepsian species (species that have not yet been recorded in the Mediterranean, i.e., non-invaders). In the Mediterranean we categorized the species as non-indigenous or indigenous. We included Styela plicata with the indigenous species of the Mediterranean for analysis although it possibly invaded from the Atlantic Ocean (Pineda et al., 2011; Maltagliati et al., 2015) as it is clearly not of tropical origin, unlike the rest of the non-indigenous species, and has been found in the Mediterranean for at least a century (de Barros et al., 2009). Data file structure: plate – id for each settlement plate (reminder: the six different habitats described above are within each plate). site – Mediterranean or Red Sea species type – ‘Lessepsian’ and ‘non Lessepsian’ for the species found on plates in the Red Sea site. ‘indigenous’ and ‘non-indigenous’ for species found on plates in the Mediterranean site. season – ‘spring’, ‘summer’, ‘autumn’, ‘winter’ for the seasonality plates. ‘long term’ for the long term (full year) plates. And ‘added by pictures’ for three records of P. nigra we added in order to increase its sample size for our niche breadth calculations. niche – ‘su’ for shells-up, ‘cu’ for ceramics-up, ‘pu’ for plastic-up, ‘sd’ for shells down etc
 substrate – shells, ceramics or plastic light – up – upper part of the plate or down – the lower part of the plate. number of individuals – the actual data – number of individuals foun

    Distance decay 2.0 – A global synthesis of taxonomic and functional turnover in ecological communities

    Get PDF
    Aim Understanding the variation in community composition and species abundances (i.e., ÎČ-diversity) is at the heart of community ecology. A common approach to examine ÎČ-diversity is to evaluate directional variation in community composition by measuring the decay in the similarity among pairs of communities along spatial or environmental distance. We provide the first global synthesis of taxonomic and functional distance decay along spatial and environmental distance by analysing 148 datasets comprising different types of organisms and environments. Location Global. Time period 1990 to present. Major taxa studied From diatoms to mammals. Method We measured the strength of the decay using ranked Mantel tests (Mantel r) and the rate of distance decay as the slope of an exponential fit using generalized linear models. We used null models to test whether functional similarity decays faster or slower than expected given the taxonomic decay along the spatial and environmental distance. We also unveiled the factors driving the rate of decay across the datasets, including latitude, spatial extent, realm and organismal features. Results Taxonomic distance decay was stronger than functional distance decay along both spatial and environmental distance. Functional distance decay was random given the taxonomic distance decay. The rate of taxonomic and functional spatial distance decay was fastest in the datasets from mid-latitudes. Overall, datasets covering larger spatial extents showed a lower rate of decay along spatial distance but a higher rate of decay along environmental distance. Marine ecosystems had the slowest rate of decay along environmental distances. Main conclusions In general, taxonomic distance decay is a useful tool for biogeographical research because it reflects dispersal-related factors in addition to species responses to climatic and environmental variables. Moreover, functional distance decay might be a cost-effective option for investigating community changes in heterogeneous environments
    corecore