94 research outputs found
Validating the use of intrinsic markers in body feathers to identify inter-individual differences in non-breeding areas of northern fulmars
Acknowledgments We thank Claire Deacon, Gareth Norton and Andrea Raab for help with laboratory work at the University of Aberdeen, and Barry Thornton and Gillian Martin for running stable isotope analysis at the James Hutton Institute. Thanks to all involved in the collection and processing of dead fulmars through the North Sea plastic pollution project at IMARES, with special thanks to Jens-Kjeld Jensen, Bergur Olsen and Elisa Bravo Rebolledo for samples from the Faroe Islands and Susanne Kühn for those from Iceland. Thanks to Orkney Islands Council for access to Eynhallow and to all the fieldworkers involved in deployment and recovery of the GLS tags. All ringing work was carried out under permit from the BTO, and feather sampling was carried out under licence from the Home Office. We are grateful to James Fox of Migrate Technologies for recovering data from GLS loggers which would not download, and Richard Phillips and Janet Silk of BAS for advice on GLS analysis. We thank Deborah Dawson of the NERC Biomolecular Analysis Facility, University of Sheffield and Stuart Piertney of University of Aberdeen for molecular sexing of the fulmars. Lucy Quinn was supported by a NERC Studentship and additional funding to support fieldwork was gratefully received from Talisman Energy (UK) Ltd. We thank Yves Cherel and two anonymous reviewers for their constructive comments on the manuscript.Peer reviewedPublisher PD
Fine scale spatial variability in the influence of environmental cycles on the occurrence of dolphins at coastal sites
Passive acoustic data were collected under a series of grants and contracts from DECC Offshore Energy Strategic Environmental Assessment Programme, Marine Scotland, Moray Offshore Renewables Ltd., The Crown Estate, Highlands and Islands Enterprise and Beatrice Offshore Wind Ltd. We thank Bill Ruck and colleagues from University of Aberdeen and Moray First Marine for fieldwork support. The tidal data was kindly provided by the United Kingdom Hydrographic Office. We would like to thank Dr Enrico Pirotta, Dr Julien Martin and Dr Barbara Cheney for their invaluable comments and ideas during the development of this work. We would also like to acknowledge the University of Aberdeen’s Maxwell computer cluster for assistance with the data processing. OFB was funded by “La Caixa” foundation and their support is gratefully acknowledged.Peer reviewedPublisher PD
Breeding status influences timing but not duration of moult in the Northern Fulmar Fulmarus glacialis
We thank Orkney Islands Council for access to Eynhallow and all the fieldworkers involved in deployment and recovery of the GLS tags and colony monitoring. All ringing work was carried out under permit from the BTO. We are grateful to James Fox of Migrate Technologies for recovering data from GLS loggers which would not download, and Richard Phillips and Janet Silk of BAS for advice on GLS analysis. Lucy Quinn was supported by a NERC Studentship and additional funding to support fieldwork was gratefully received from Talisman Energy (UK) Ltd. Additional support for loggers and analysis was provided through the SEATRACK project, which is funded by the Norwegian Ministry of Climate and Environment, the Norwegian Ministry of Foreign Affairs and the Norwegian Oil and Gas Association.Peer reviewedPostprin
Broad-Scale Responses of Harbor Porpoises to Pile-Driving and Vessel Activities During Offshore Windfarm Construction
This study was partly funded by Beatrice Offshore Wind Ltd. and Moray Offshore Wind Farm (East) Ltd. using equipment previously purchased by UK Department of Energy & Climate Change, Scottish Government, Oil and Gas UK, COWRIE and Moray Offshore Renewables Ltd.. P.T. and I.G. were core funded by University of Aberdeen. A.B. was core funded by the collaboration between University of Aberdeen and Marine Scotland Science through the MarCRF PhD studentship. N.M. was core funded by Centre for Environment, Fisheries and Aquaculture Science.Peer reviewedPublisher PD
Echolocation detections and digital video surveys provide reliable estimates of the relative density of harbour porpoises
Acknowledgements We would like to thank Erik Rexstad and Rob Williams for useful reviews of this manuscript. The collection of visual and acoustic data was funded by the UK Department of Energy & Climate Change, the Scottish Government, Collaborative Offshore Wind Research into the Environment (COWRIE) and Oil & Gas UK. Digital aerial surveys were funded by Moray Offshore Renewables Ltd and additional funding for analysis of the combined datasets was provided by Marine Scotland. Collaboration between the University of Aberdeen and Marine Scotland was supported by MarCRF. We thank colleagues at the University of Aberdeen, Moray First Marine, NERI, Hi-Def Aerial Surveying Ltd and Ravenair for essential support in the field, particularly Tim Barton, Bill Ruck, Rasmus Nielson and Dave Rutter. Thanks also to Andy Webb, David Borchers, Len Thomas, Kelly McLeod, David L. Miller, Dinara Sadykova and Thomas Cornulier for advice on survey design and statistical approache. Data Accessibility Data are available from the Dryad Digital Repository: http://dx.doi.org/10.5061/dryad.cf04gPeer reviewedPublisher PD
Heterogeneous trimetallic nanoparticles as catalysts
The development and application of trimetallic nanoparticles continues to accelerate rapidly as a result of advances in materials design, synthetic control, and reaction characterization. Following the technological successes of multicomponent materials in automotive exhausts and photovoltaics, synergistic effects are now accessible through the careful preparation of multielement particles, presenting exciting opportunities in the field of catalysis. In this review, we explore the methods currently used in the design, synthesis, analysis, and application of trimetallic nanoparticles across both the experimental and computational realms and provide a critical perspective on the emergent field of trimetallic nanocatalysts. Trimetallic nanoparticles are typically supported on high-surface-area metal oxides for catalytic applications, synthesized via preparative conditions that are comparable to those applied for mono- and bimetallic nanoparticles. However, controlled elemental segregation and subsequent characterization remain challenging because of the heterogeneous nature of the systems. The multielement composition exhibits beneficial synergy for important oxidation, dehydrogenation, and hydrogenation reactions; in some cases, this is realized through higher selectivity, while activity improvements are also observed. However, challenges related to identifying and harnessing influential characteristics for maximum productivity remain. Computation provides support for the experimental endeavors, for example in electrocatalysis, and a clear need is identified for the marriage of simulation, with respect to both combinatorial element screening and optimal reaction design, to experiment in order to maximize productivity from this nascent field. Clear challenges remain with respect to identifying, making, and applying trimetallic catalysts efficiently, but the foundations are now visible, and the outlook is strong for this exciting chemical field
2017 Update of ESC/EAS Task Force on practical clinical guidance for proprotein convertase subtilisin/kexin type 9 inhibition in patients with atherosclerotic cardiovascular disease or in familial hypercholesterolaemia
A correction has been published: European Heart Journal, Volume 39, Issue 22, 7 June 2018, Pages 2105Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017.info:eu-repo/semantics/publishedVersio
Global application of an unoccupied aerial vehicle photogrammetry protocol for predicting aboveground biomass in non‐forest ecosystems
P. 1-15Non-forest ecosystems, dominated by shrubs, grasses and herbaceous plants, provide ecosystem services including carbon sequestration and forage for grazing, and are highly sensitive to climatic changes. Yet these ecosystems are poorly represented in remotely sensed biomass products and are undersampled by in situ monitoring. Current global change threats emphasize the need for new tools to capture biomass change in non-forest ecosystems at appropriate scales. Here we developed and deployed a new protocol for photogrammetric height using unoccupied aerial vehicle (UAV) images to test its capability for delivering standardized measurements of biomass across a globally distributed field experiment. We assessed whether canopy height inferred from UAV photogrammetry allows the prediction of aboveground biomass (AGB) across low-stature plant species by conducting 38 photogrammetric surveys over 741 harvested plots to sample 50 species. We found mean canopy height was strongly predictive of AGB across species, with a median adjusted R2 of 0.87 (ranging from 0.46 to 0.99) and median prediction error from leave-one-out cross-validation of 3.9%. Biomass per-unit-of-height was similar within but different among, plant functional types. We found that photogrammetric reconstructions of canopy height were sensitive to wind speed but not sun elevation during surveys. We demonstrated that our photogrammetric approach produced generalizable measurements across growth forms and environmental settings and yielded accuracies as good as those obtained from in situ approaches. We demonstrate that using a standardized approach for UAV photogrammetry can deliver accurate AGB estimates across a wide range of dynamic and heterogeneous ecosystems. Many academic and land management institutions have the technical capacity to deploy these approaches over extents of 1–10 ha−1. Photogrammetric approaches could provide much-needed information required to calibrate and validate the vegetation models and satellite-derived biomass products that are essential to understand vulnerable and understudied non-forested ecosystems around the globe.S
2019 ESC/EAS guidelines for the management of dyslipidaemias : Lipid modification to reduce cardiovascular risk
Correction: Volume: 292 Pages: 160-162 DOI: 10.1016/j.atherosclerosis.2019.11.020 Published: JAN 2020Peer reviewe
Parkinson’s disease mouse models in translational research
Animal models with high predictive power are a prerequisite for translational research. The closer the similarity of a model to Parkinson’s disease (PD), the higher is the predictive value for clinical trials. An ideal PD model should present behavioral signs and pathology that resemble the human disease. The increasing understanding of PD stratification and etiology, however, complicates the choice of adequate animal models for preclinical studies. An ultimate mouse model, relevant to address all PD-related questions, is yet to be developed. However, many of the existing models are useful in answering specific questions. An appropriate model should be chosen after considering both the context of the research and the model properties. This review addresses the validity, strengths, and limitations of current PD mouse models for translational research
- …